
Literature page

"Starting Forth" by Leo Brodie

Introduction

Chapter 1 Fundamental Forth

Chapter 2 How to Get Results

Chapter 3 The Editor (and Staff)

Chapter 4 Decision, Decisions, ...

Chapter 5 The Philosophy of Fixed Point

Chapter 6 Throw it for a Loop

Chapter 7 A Number of Kinds of Numbers

Chapter 8 Variables, Constants, and Arrays

Chapter 9 Under the Hood

Chapter 10 I/O and You

Chapter 11 Extending the Compiler

Chapter 12 Three Examples

18SEP03
Contact & Discussion Forum

Valid HTML
4.01!

http://www.amresearch.com/starting_forth/index.html [05/03/2005 04:51:21]

http://validator.w3.org/check/referer
http://validator.w3.org/check/referer
http://validator.w3.org/check/referer

Leo Brodie's Starting Forth - Intro

Starting FORTH

by

Leo Brodie

About the Author
Leo Brodie's inability to express even the most complex technical concepts without adding a twist of humor comes from an early love of
comedy. He specialized in playwriting at UCLA and has had several comedies produced there and in local theater. He has also written
freelance magazine articles and has worked as a copywriter for an add agency. When a company he was working for installed a computer, he
became inspired to try designing a microprocessor-based toy. Although he never got the toy running, he learned a lot about computers and
programming. He now works at Forth, Inc. as a technical and marketing writer, where he can play on the computers as the muse determines
without having to be a fanatical computer jockey, and is allowed to write books such as this.

Leo's other interests include singing, driving classic Volvos, and dancing to 50's music.

http://www.amresearch.com/starting_forth/sfo/sf0.html (1 sur 10) [05/03/2005 04:52:02]

Leo Brodie's Starting Forth - Intro

Foreword
The Forth community can celebrate a significant event with the publication of Starting Forth. A greater effort,
talent, and commitment have gone into this book than into any previous introductory manual. I, particularly, am
pleased at this evidence of the growing popularity of Forth, the language.

I developed Forth over the period of some years as an interface between me and the computers I programmed. The
traditional languages were not providing the power, ease, or flexibility that I wanted. I disregarded much
conventional wisdom in order to include exactly the capabilities needed by a productive programmer. The most
important of these is the ability to add whatever capabilities later become necessary.

The first time I combined the ideas I had been developing into a single entity, I was working on an IBM 1130, a
"third-generation" computer. The result seemed so powerful that I considered it a "fourth-generation computer
language." I would have called it FOURTH, except that the 1130 permitted only five-character identifiers. So
FOURTH became FORTH, a nicer play on words anyway.

One principle that guided the evolution of Forth, and continues to guide its application, is bluntly: Keep It Simple.
A simple solution has elegance. It is the result of exacting effort to understand the real problem and is recognized
by its compelling sense of rightness. I stress this point because it contradicts the conventional view that power
increases with complexity. Simplicity provides confidence, reliability, compactness, and speed.

Starting Forth was written and illustrated by Leo Brodie, a remarkably capable person whose insight and
imagination will become apparent. This book is an original and detailed prescription for learning. It deftly guides the novice over the thresholds of understanding that
all Forth programmers must cross.

Although I am the only person who has never had to learn Forth, I do know that its study is a formidable one. As with a human language, the usage of many words
must be memorized. For beginners, Leo's droll comments and superbly cast characters appear to make this study easy and enjoyable. For those like myself who already
know Forth, a quick reading provides a delightful trip and fresh views of familiar terrain. But I hope this book is not so easy and enjoyable that it seems trivial. Be
warned that there is heavy content here and that you can learn much about computers and compilers as well as about programming.

Forth provides a natural means of communication between man and the smart machines he is surrounding himself with. This requires that it share characteristics of
human languages, including compactness, versatility, and extensibility. I cannot imagine a better language for writing programs, expressing algorithms, or
understanding computers. As you read this book, I hope that you may come to agree.

Charles H. Moore
Inventor of Forth

http://www.amresearch.com/starting_forth/sfo/sf0.html (2 sur 10) [05/03/2005 04:52:02]

Leo Brodie's Starting Forth - Intro

About This Book
Welcome to Starting Forth, your introduction to an exciting and powerful computer language called Forth.

If you're a beginner who wants to learn more about computers, Forth is a great way to learn. Forth is more fun to write programs with than any language that I know of.
(See the "Introduction for Beginners.")

If you are a seasoned professional who wants to learn Forth, this book is just what you need. Forth is a very different approach to computers, so different that everyone,
from newcomers to old hands, learns Forth best from the ground up. If you're adept at other computer languages, put them out of your mind for now, and remember
only what you know about computers. (See the "Introduction for Professionals.")

Since many people with different backgrounds are interested in Forth, I've arranged this book so that you'll only have to read what you need to know, with footnotes
addressed to different kinds of readers. The first half of Chap. 7 provides a background to computer arithmetic for beginners only.

This book explains how to write simple applications in Forth. It includes all standard Forth words that you need to write a high-level single-task application. This word
set is an extremely powerful one, including everything from simple math operators to compiler-controlling words. (ANS Forth standard online)

Excluded from this book are all commands that are related to the assembler, target compiler and other specialized utilities. These commands are available on some
versions of Forth such as Gforth and most commercial implementations. (Forth vendors)

I've chosen examples that will actually work on a Forth system with a terminal and a disk. Don't infer from this that Forth is limited to batch or string-handling tasks,
since there is really no limit to Forth's usefulness.

Here are some features of this book that will make it easy to use:

All commands are listed twice: first, in the section in which the word is introduced, and second, in the summary at the end of that chapter.

Each chapter also has a review of terms and a set of exercise problems, with answers.

Several "Handy Hints" have been included to reveal procedural tips or optional routines that are useful for learners but that don't merit an explanation as to how or why
they work.

A personal note: Forth is a very unusual language. It violates many cardinal rules of programming. My first reaction to Forth was extremely sceptical, but as I tried to
develop complicated applications I began to see its beauty and power. You owe it to yourself to keep an open mind while reading about some of its peculiarities. I'll
warn you now: few programmers who learn Forth ever go back to other languages.

http://www.amresearch.com/starting_forth/sfo/sf0.html (3 sur 10) [05/03/2005 04:52:02]

http://www.taygeta.com/forth/dpans.html
http://isc.faqs.org/faqs/computer-lang/forth-faq/part3/

Leo Brodie's Starting Forth - Intro

Good luck, and enjoy learning!

Leo Brodie
FORTH, Inc.

Acknowledgements
I'd like to thank the following people who helped to make this book possible:

For consultation on Forth technique and style: Dean Sanderson, Michael LaManna, James Dewey, Edward K. Conklin, and Elizabeth D. Rather, all of FORTH Inc.; for
providing insights into the art of teaching Forth and for writing several of the problems in this book: Kim Harris of the Forth Interest Group; for proofreading, editorial
suggestions, and enormous amounts of work formatting the pages: Carolyn A. Rosenberg; for help with typing and other necessities: Sue Linstrot, Carolyn Lubisich,
Kevin Weaver, Kris Cramer, and Stephanie Brown Brodie; for help with the graphics: Winnie Shows, Natasha Elbert, Barbara Roberts, and John Dotson of Sunrise
Printery (Redondo Beach, CA); for technical assistance: Bill Patterson and Gary Friendlander; for constructive criticism, much patience and love: Stephanie Brown
Brodie; and for inventing Forth: Charles H. Moore.

Comments on the Web Edition
Starting Forth, First Edition is from 1981. These web pages were entered from memory in 2003, when it became apparent that SF might never be re-issued by the
copyright holder. A small supply of about 500 books is all that was available in April 2003.

When you can get hold of the original, do so.

This transcript is inaccurate. Forth code has been ANSified. All code should run on, at least Gforth and iForth. Where necessary, statements that were valid in 1981
have been exchanged with statements more appropriate for 2003.

Starting Forth is full of very difficult to reproduce graphics. These enormously enhance the text's mnemonic value, and are invaluable for a first-time Forth user. I have
therefore added "substitute" graphic elements, roughly at the same spot where they are in the original. The original graphics are, of course, much better.

In this transcript I have assumed a 32-bit, byte-addressing Forth, with 8-bit characters. Multitasking issues are ignored (e.g. no >TYPE, just TYPE). Division is
symmetric, not floored, and two's complement is assumed throughout. Gforth and iForth work splendidly with it, but other Forths will work too. Chapter 7 exploits

http://www.amresearch.com/starting_forth/sfo/sf0.html (4 sur 10) [05/03/2005 04:52:02]

http://theforthsource.com/catalog.html

Leo Brodie's Starting Forth - Intro

extended uses of number conversion. Most Forths are broken in this respect, but iForth and SwiftForth support these neat features.

Introductions

Introduction for Beginners: What is a Computer Language?

At first when beginners hear the term "computer language," they wonder, "What kind of language could a computer possibly speak? It must
be awfully hard for people to understand. It probably looks like:

 976#!@NX714&+

if it looks like anything at all."

Actually a computer language should not be difficult to understand. Its purpose is simply to serve as a convenient compromise for
communication between a person and a computer.

Consider the marionette. You can make a marionette "walk" simply by working the wooden control, without even touching the strings. You
could say that rocking the control means "walking" in the language of the marionette. The puppeteer guides the marionette in a way that the
marionette can understand and that the puppeteer can easily master.

Computers are machines just like the marionette. They must be told exactly what to do, in specific language. And so we need a language
which possesses two seemingly opposite traits:

On the one hand, it must be precise in its meaning to the computer, conveying all the information that the computer needs to know to
perform the operation. On the other hand, it must be simple and easy-to-use by the programmer.

Many languages have been developed since the birth of computers: Fortran is the elder statesman of the field; COBOL is still the standard
language for data processing; BASIC was designed as a beginner's language along the road toward languages like Fortran and COBOL; C and Java are the general
purpose application languages of the 90's. This book is about a very different kind of language: Forth. Forth's popularity has kept constant over the past several years,
and its popularity is shared among programmers in all fields.

All the languages mentioned above, including Forth, are called "high-level" languages. It's important for beginners to recognize the difference between a high-level
language and the computer it runs on. A high-level language looks the same to a programmer regardless of which make or model of computer it's running on. But each
make or model has its own internal language, or "machine language." To explain what a machine language is, let's return to the marionette.

http://www.amresearch.com/starting_forth/sfo/sf0.html (5 sur 10) [05/03/2005 04:52:02]

Leo Brodie's Starting Forth - Intro

Imagine that there is no wooden control and that the puppeteer has to deal directly with the strings. Each string corresponds to exactly one part of the marionette's
body. The harmonious combinations of movements of the individual strings could be called the marionette's "machine language."

Now tie the strings to a control. The control is like a high-level language. With a simple turn of the wrist, the puppeteer can
move many strings simultaneously.

So it is with a high-level computer language, where the simple and familiar symbol "+" causes many internal functions to be
performed in the process of addition.

Here's a clever thing about a computer: it can be programmed to translate high-level symbols (such as "+") into the computer's
own machine language. Then it can proceed to carry out the machine instructions. A high-level language is a computer
program that translates humanly understandable words and symbols into the machine language of the particular make and
model of computer.

What's the difference between Forth and other high-level languages? To put it very briefly: it has to do with the compromise
between man and computer. A language should be designed for the convenience of its human users, but at the same time for
compatibility with the operation of the computer.

Forth is unique among languages because its solution to this problem is unique. This book will explain how.

Introduction for Professionals: Forth in the Real World

Forth enjoyed a rising tide of popularity up to around 1994, (ANS and ISO Forth standards), perhaps most visibly among enthusiasts and hobbyists. After 1996 or so
Forth's popularity has stayed relatively constant. But this development is only a new wrinkle in the history of Forth. Forth has been in use from 1972 on, in critical
scientific and industrial applications. In fact, if you use a mini- or microcomputer professionally, chances are that Forth can run your application--more efficiently than
the language you're presently using.

Now you'll probably ask rhetorically, "If Forth is so efficient, how come I'm not using it?" The answer is that you, like most people, don't know what Forth is.

To really get an understanding of Forth, you should read this book and, if possible, find a Forth system and try it for yourself. For those of you who are still at the
bookstore browsing, however, this section will answer two questions: "What is Forth?" and "What is it good for?"

Forth is many things:

● a high-level language
● an assembly language

http://www.amresearch.com/starting_forth/sfo/sf0.html (6 sur 10) [05/03/2005 04:52:02]

Leo Brodie's Starting Forth - Intro

● an operating system
● a boot loader and device driver layer for operating systems
● a chip design CAD system
● a set of development tools
● a software design philosophy

As a language, Forth begins with a powerful set of standard commands, then provides the mechanics by which you can define your own commands. The structural
process of building definitions upon previous definitions is Forth's equivalent of high-level coding. Alternatively, words may be defined directly in assembler
mnemonics, using Forth's assembler. All commands are interpreted by the same interpreter and compiled by the same compiler, giving the language extreme
flexibility.

The highest level of your code will resemble an English-language description of your application. Forth has been called a "meta-application language"--a language that
you can use to create problem-oriented languages.

As an operating system, Forth does everything that traditional operating systems do, including interpretation, compilation, assembling, virtual memory handling, I/O,
text editing, etc.

But because the Forth operating system is much simpler than its traditional counterparts due to Forth's design, it runs much more quickly, much more conveniently,
and in much less memory.

What is Forth good for? Forth offers a simple means to maximize a processor's efficiency. For example:

Forth is fast. High-level Forth executes as fast as other high-level languages and between 20 to 75% slower than equivalent assembly-language programs, while time-
critical code may be written in assembler to run at full processor speed. Without a traditional operating system, Forth eliminates redundancy and needless run-time
error checking.

Forth compiled code is compact. Forth applications require less memory than their equivalent assembly-language programs and consume less power (important for
hand-helds and portable gadgets!) Written in Forth, the entire operating system and its standard word set reside in less than 8K bytes. Support for a target application
may require less than 1K bytes.

Forth is transportable. It has been implemented on just about every mini- and microcomputer known to the industry. Most microcontrollers and DSPs, even tiny ones,
also have a Forth implementation.

Forth has been known to cut program development time by a factor of ten for equivalent assembly-language programming and by a factor of two for equivalent high-
level programming in C or Java. Productivity increases because Forth epitomizes "structured programming" and because it is interactive and modular.

Here are a few samples of Forth in the real world (FORTH, Inc., MPE):

http://www.amresearch.com/starting_forth/sfo/sf0.html (7 sur 10) [05/03/2005 04:52:02]

http://www.forth.com/Content/Products/CaseHist.htm
http://www.mpeltd.demon.co.uk/forth.htm

Leo Brodie's Starting Forth - Intro

● AVCO/Textron Systems, building automation and auxiliary services for King Khaled International Airport (Saudi Arabia). System contains nine PDP 11/44s,
378 8086-based computers, and 320 8085-based security processors,collectively monitoring and controlling over 36,000 points.

● Eastman Kodak Company, quality control system monitoring photographic film density. Includes film motion control, automatic recognition of film density
steps, and custom IEEE-488 bus interface.

● Federal Express, hand-held SuperTracker, carried by every FedEx delivery agent. Contains bar-code reader, keyboard, 2x20 line display. Performs extensive
package entry and tracking functions, including cross index from airport code to all 10,000 US zip codes. Includes smart power-off
sequencing to extend battery life.

● NASA Goddard Space Flight Center:
1. Control of 50-foot long, six-joint arm for Space Shuttle simulator. Extensive math routines convert two three-axis joystick

commands into required joint velocities in six different co-ordinate systems.
2. Multitasking operating system, Forth language compiler, and libraries

for UT69R000 radiation-hardened microprocessor used in Space Shuttle
instrumentation.

3. Development of the Forth-based Small Payload Accomodations
Interface Module (SPAIM), which interfaces the Shuttle Solar
Backscatter Ultraviolet (SSBUV) instrument to the Space Shuttle's
avionic systems. The SSBUV instrument is used to calibrate ozone-
measuring instruments aboard NOAA satellites.

● Owens-Corning Fiberglas, Owens-Corning has used Forth for many years as
the basic firmware in its distributed industrial controllers. These controllers
perform a wide variety of functions, managing winders, weighing devices, etc.,
used in the manufacture of various fiberglass products. Plants in Korea and
Mexico also use FORTH, Inc.'s EXPRESS to provide supervisory control and
reporting functions.

● Saturn Corp, distributed HVAC system for entire Saturn automobile assembly plant, controlling over two hundred 40 hp. heating - cooling - humidifying units
(with Z-80s) over a two-tier network using PCs as text and graphical system monitors. Outside air sensors provide inputs for intelligent set-point control and
economic use of gas heating and chilled-water cooling systems.

● Sacramento Municipal Utilities District (California): photovoltaic arrays in the state capitol feature EXPRESS to provide user-configurable live trending,
historical trending, alarm/exception reporting, rule-tracking, I/O system exerciser, class-based real-time database, graphical
process displays, simultaneous multiple vendor I/O system scanning, I/O and process simulation for development, and
multiple remote terminal access with full graphics. Custom drivers for the Digitronics Sixnet(TM) I/O system were provided
in one week; EXPRESS already supports Modicon, Allen-Bradley, OPTO-22 OPTOMUX and PAMUX, plus others.
● University of Minnesota, PC-based system for telescope control and data taking (over IEEE-488 bus), data analysis and
graphics display. Includes provision for remote observing, using a custom protocol to multiplex packets from three
independent data streams over a single telephone line.
● VertexRSI (Div. of Tripoint Global), software for custom satellite tracking receivers. Includes frequency synthesizer

http://www.amresearch.com/starting_forth/sfo/sf0.html (8 sur 10) [05/03/2005 04:52:02]

http://www.riyadh-today.com/arrival%20in%20riyadh/ar%2860%29.htm

Leo Brodie's Starting Forth - Intro

control, remote RS-232 command port, vacuum fluorescent graphics display.
● A mobile phone manufacturer is introducing a new games engine derived from the SENDIT project. This uses a Forth-based virtual

machine to reduce the size of games in the phone, and to permit more functionality to be provided in the phone without increasing
memory size.

● A recent consultancy project based on MPE 8051 and ARM hardware, will introduce a new range of vending machines to the
market.

● Construction Computer Software (CCS) in Cape Town produce the MARS and CANDY applications which are a standard all over
the world. The CCS software is an example of a large-scale Windows application written in ProForth for Windows, and the VFX
Forth version already consists of over 850,000 lines of code. CCS software was used to plan the new Chai Tak airport in Hong
Kong. The CCS web site is here.

● Barefoot Auditor is used by Microsoft for collecting information about their own PCs, and was written using one of MPE's Forth
systems. Barefoot Auditor has been available on several magazine cover disks recently, and more information is available from
Pathfinder.

●

Micross Electronics, use MPE's ProForth for Windows at the heart of their commercial laundry control systems, and MPE's Forth 6 cross compilers for the
PLCs performing real time control. These systems are installed in many countries, and you may have slept in sheets washed by the Micross Tracknet control
systems.

● Forth virtual machine runs payment terminals: Europay International's Open Terminal Architecture (OTA). OTA uses a virtual machine (VM) architecture to
deliver payment terminal applications directly to payment terminals regardless of their hardware or CPU. The OTA VM has been installed on a range of CPUs
and is now being deployed. The OTA project involved up to 30 programmers working in several locations on two continents. OTA is described here.

There's a catch we must admit. It is that Forth makes you responsible for your computer's efficiency. To draw an analogy: a manual transmission is tougher to master
than an automatic, yet for many drivers it offers improved control over the vehicle.

Similarly, Forth is tougher to master than traditional high-level languages, which essentially resemble one another (i.e., after learning one, it is not difficult to learn
another). Once mastered, however, Forth gives you the capability to minimize CPU time and memory space, as well as an organizing philosophy by which you can
dramatically reduce project development time.

http://www.amresearch.com/starting_forth/sfo/sf0.html (9 sur 10) [05/03/2005 04:52:02]

http://www.ccssa.com/
http://www.micross.co.uk/
http://www.europay.com/

Leo Brodie's Starting Forth - Intro

And remember, all of Forth's elements enjoy the same protocol, including operating system (sometimes), compiler, interpreters, text editor, virtual memory, assembler,
and multiprogrammer. The learning curve for Forth is much shorter than that for all these separate elements added together.

If all of this sounds exciting to you, turn the page and start Forth.

http://www.amresearch.com/starting_forth/sfo/sf0.html (10 sur 10) [05/03/2005 04:52:02]

http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 1

1 Fundamental Forth
In this chapter we'll acquaint you with some of the unique properties of the Forth language. After a few introductory pages we'll have you
sitting at a Forth terminal.

A Living Language

Imagine that you're an office manager and you've just hired a new, eager assistant. On the first day, you teach the assistant the proper
format for typing correspondence. (The assistant already knows how to type.) By the end of the day, all you have to do is say "Please type
this."

On the second day, you explain the filing system. It takes all morning to explain where everything goes, but by the afternoon all you have
to say is "Please file this."

By the end of the week, you can communicate in a kind of shorthand, where "Please send this letter" means "Type it, get me to sign it,
photocopy it, file the copy, and mail the original." Both you and your assistant are free to carry out your business more pleasantly and
efficiently.

Good organization and effective communication require that you

1. define useful tasks and give each task a name, then
2. group related tasks together in larger tasks and give each of these a name, and so on.

Forth lets you organize your own procedures and communicate them to a computer in just this way (except you don't have to say "please").

As an example, imagine a microprocessor-controlled washing machine programmed in Forth. The ultimate command in your example is
named WASHER. Here is the definition of WASHER, as written in Forth:

 : WASHER WASH SPIN RINSE SPIN ;

In Forth, the colon indicates the beginning of a new definition. The first word after the colon, WASHER, is the name of the new procedure.
The remaining words, WASH, SPIN, RINSE and SPIN, comprise the "definition" of the new procedure. Finally, the semicolon indicates
the end of the definition.

Each of the words comprising the definition of WASHER has already been defined in our washing-machine application. For example, let's
look at our definition of RINSE:

 : RINSE FAUCETS OPEN TILL-FULL FAUCETS CLOSE ;

In this definition we are referring to things (faucets) as well as actions (open and close). The word TILL-FULL has been defined to create
a "delay-loop" which does nothing but mark time until the water-level switch has been activated, indicating that the tub is full.

If we were to trace these definitions back, we would eventually find that they are all defined in terms of a group of very useful commands
that form the basis of all Forth systems. For example, a complete ANS Forth with all extensions includes 371 such commands. Many of
these commands are themselves "colon definitions" just like our example words; others are defined directly in the machine language of the

particular computer. In Forth, a defined command is called a "word."

The ability to define a word in terms of other words is called "extensibility." Extensibility leads to a style of programming that is extremely

http://www.amresearch.com/starting_forth/sf1/sf1.html (1 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

simple, naturally well-organized, and as powerful as you want it to be.

Whether your application runs an assembly line, acquires data for a scientific environment, maintains a business application, or plays a
game, you can create your own "living language" of words that relate to your particular need.

In this book we'll cover the most useful of the standard Forth commands.

All This and ... Interactive!

One of Forth's many unique features is that it lets you "execute" a word by simply naming the word. If you're working at a terminal
keyboard, this can be as simple as typing in the word and pressing the RETURN key.

Of course, you can also use the same word in the definition of any other word, simply by putting its name in the definition.

Forth is called an "interactive" language because it carries out your commands the instant that you enter them.

We're going to give an example that you can try yourself, showing the process of combining simple commands into more powerful
commands. We'll use some simple Forth words that control your terminal screen. But first, let's get acquainted with the mechanics of
"talking" to Forth through your terminal's keyboard.

Take a seat at your real or imaginary Forth terminal. We'll
assume that someone has been kind enough to set everything up
for you, or that you have followed all the instructions given for
loading Forth on your particular computer.

Now press the key labeled:

 RETURN

The computer will respond by saying

 ok

The RETURN key is your way of telling Forth to acknowledge your request. The ok is Forth's way of saying that it's done everything you
asked it to do without any hangups. In this case, you didn't ask it to do anything, so Forth obediently did nothing and said ok.

Now enter this:

 15 SPACES

If you make a typing mistake, you can correct it by hitting the "backspace" key. Back up to the mistake, enter the correct letter, and
continue. When you have typed the line correctly, press the RETURN key. (Once you press RETURN, it's too late to correct the line.)

In this book, we use the symbol to mark the point where you must press the RETURN key. We also underline the computer's output

(even though the computer does not) to indicate who is typing what.

Here's what has happened:

 15 SPACES ok

As soon as you pressed the return key, Forth printed fifteen blank spaces and then, having processed your request, responded ok (at the end
of the fifteenth space).

Now enter this:

http://www.amresearch.com/starting_forth/sf1/sf1.html (2 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

 42 EMIT * ok

The phrase "42 EMIT" tells Forth to print an asterisk (we'll discuss this command later on in the book.) Here Forth printed an asterisk,
then responded ok.

We can put more than one command on the same line. For example:

 15 SPACES 42 EMIT 42 EMIT ** ok

This time Forth printed fifteen spaces and two asterisks. A note about entering words and/or numbers: we can separate them from another
by as many spaces as we want for clarity. But they must be separated by at least one space for Forth to be able to recognize them as words
and/or numbers.

Instead of entering the phrase

 42 EMIT

over and over, let's define it as a word called "STAR."

Enter this:

 : STAR 42 EMIT ; ok

Here STAR is the name; "42 EMIT" is the definition. Notice that we set off the colon and semicolon from adjacent words with a space.
Also, to make Forth definitions easy for human beings to read, we conventionally separate the name of the definition from its contents with
three spaces.

After you have entered the above definitions and pressed RETURN, Forth responds ok, signifying that it has recognized your definition and
will remember it. Now enter

 STAR * ok

Voila! Forth executes your definition of "STAR" and prints an asterisk.

There is no difference between a word such as STAR that you define yourself and a word such as EMIT that is already defined. In this
book, however, we will print those words that are already defined in blue, so that you can more easily tell the difference.

Another system-defined word is CR, which performs a carriage return and line feed at your terminal. For example, enter this:

 CR

 ok

As you can see, Forth executed a carriage return, then printed ok (on the next line).

Now try this:

 CR STAR CR STAR CR STAR

 *
 *
 * ok

Let's put a CR in a definition, like this:

 : MARGIN CR 30 SPACES ; ok

Now we can enter

http://www.amresearch.com/starting_forth/sf1/sf1.html (3 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

 MARGIN STAR MARGIN STAR MARGIN STAR

and get three stars lined up vertically, thirty spaces in from the left.

Our MARGIN STAR combination will be useful for what we intend to do, so let's define

 : BLIP MARGIN STAR ; ok

We will also need to print a a horizontal row of stars. So let's enter the following definition (we'll explain how it works in a later chapter):

 : STARS 0 DO STAR LOOP ; ok

Now we can say

 5 STARS ***** ok

or

 35 STARS *********************************** ok

or any number of stars imaginable.

We will need a word which performs MARGIN, then prints five stars. Let's define it like this:

 : BAR MARGIN 5 STARS ; ok

Now we can enter

 BAR BLIP BAR BLIP BLIP CR

and get a letter "F" (for Forth) made up of stars. It should look like this:

 *

 *
 *

The final step is to make this new procedure a word. Let's call the word "F":

 : F BAR BLIP BAR BLIP BLIP CR ; ok

You've just seen an example of the way simple Forth commands can become a foundation for more complex commands. A Forth
application, when listed, consists of a series of increasingly powerful definitions rather than a sequence of instructions to be executed in
order.

To give you a sample of what a Forth application really looks like, here's a listing of our experimental application:

 (Large letter F)
 : STAR 42 EMIT ;
 : STARS 0 DO STAR LOOP ;
 : MARGIN CR 30 SPACES ;
 : BLIP MARGIN STAR ;
 : BAR MARGIN 5 STARS ;
 : F BAR BLIP BAR BLIP BLIP CR ;

The Dictionary

http://www.amresearch.com/starting_forth/sf1/sf1.html (4 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

Each word and its definition are entered into Forth's "dictionary." The dictionary already contained many words when you started, but your
own words are now in the dictionary as well.

When you define a new word, Forth translates your definition into dictionary form and writes the

entry in the dictionary. This process is called "compiling."

For example, when you enter the line

 : STAR [CHAR] * EMIT ; ok

the compiler compiles the new definition (it does the same as "42 EMIT" but
doesn't use magic numbers) into the dictionary. The compiler does not print the
asterisk.

Once a word is in the dictionary, how is it executed? Let's say you enter the following line directly at your terminal (not inside a
definition):

 STAR 30 SPACES

This will activate a word called INTERPRET, also known as the "text interpreter." The text interpreter scans the input stream, looking for
strings of characters separated by spaces. When a string is
found, it is looked up in the dictionary. If the word is in the
dictionary, it is pointed out to a word called EXECUTE.
EXECUTE executes the definition (in this case an asterisk is
printed). Finally, the interpreter says everything's "ok."

If

the interpreter cannot find the string in the dictionary, he calls the
number-runner (called NUMBER). NUMBER knows a number when

he sees one. If NUMBER finds a number, he runs it off to a temporary storage location for numbers.

What happens when you try to execute a word that is not in the dictionary? Enter this and see what happens:

 XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to pass it off on
NUMBER. NUMBER shines it on. Then the interpreter returns the string to you with a
question mark (Some Forths print various error messages along with this.)

ANS Forth allows up to thirty-one characters of a name to be stored in the dictionary. A name
should contain only graphic characters.

To summarize: when you type a pre-defined word at the terminal, it gets interpreted and then
executed.

Now remember we said that : is a word? When you type the word :, as in

 : STAR [CHAR] * EMIT ;

the following occurs:

The text interpreter finds the colon in the input stream, and points it out to EXECUTE. The compiler translates the definition into

http://www.amresearch.com/starting_forth/sf1/sf1.html (5 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

dictionary form and writes it in the dictionary. When the compiler gets to the semicolon, he stops, and execution returns to the text
interpreter, who gives the message ok.

Say What?

In Forth, a word is a character or group of characters that have a definition. Almost any character can be used in naming a word. The
reasons that some of the control characters cannot be used are:

return because the computer thinks you've finished entering.

backspace because the computer thinks you are trying to correct a typing error.

space because the computer thinks it's the end of the word.

Here is a Forth word whose name consists of two punctuation marks. The word is ." and it is pronounced dot-quote. You can use ." inside a
definition to type a string of text at your terminal. Here's an example:

 : GREET ." Hello, I speak Forth " ; ok

We've just defined a word called GREET. It's definition consists of just one Forth word, .", followed by the text that we want typed. The
quotation mark at the end of the text will not be typed; it marks the end of the text. It's called a "delimiter."

When entering the definition of GREET, don't forget the closing ; to end the definition.

Let's execute GREET:

 GREET Hello, I speak Forth ok

The Stack: Forth's Worksite for Arithmetic

A computer would not be much good if it couldn't do arithmetic. If you never studied computers before, it may seem pretty amazing that a
computer (or even a pocket calculator) can do arithmetic at all. We can't cite all the mechanics in this book, but believe us, it's not a
miracle.

In general, computers perform their operations by breaking everything they do into ridiculously tiny pieces of information and ridiculously
easy things to do. To you and me, "3 + 4" is just "7," without even thinking. To a computer, "3 + 4" is actually a very long list of things to
do and remember.

Without getting too specific, let's say you have a pocket calculator which expects its buttons to be pushed in this order:

in order to perform the addition and display the result. Here's a generalized picture of what might occur:

When you press

--the number 3 goes into one place (called Box A).

http://www.amresearch.com/starting_forth/sf1/sf1.html (6 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

--the intended operation (addition) is remembered somehow.

--the number 4 is stored into a second place (called Box B).

--the calculator performs the operation that is stored in the "Next Operation" Box on the contents of the number boxes and leaves the result
in Box A.

Many calculators and computers approach arithmetic problems in a way similar to what we've just described. You may not be aware of it,
but these machines are actually storing numbers in various locations and then performing operations on them.

In Forth, there is one central location where numbers are temporarily stored before being operated on. That location is called the "stack."
Numbers are "pushed onto the stack," and then operations work on the numbers on the stack.

The best way to explain the stack is to illustrate it. If you enter the following line at your terminal:

 3 4 + . 7 ok

here is what happens, key by key.

Recall that when you enter a number at your terminal, the text interpreter hands it over to NUMBER, who runs it to
some location. That location, it can now be told, is the stack. In short, when you enter the number three from the
terminal, you push it onto the stack.

Now the four goes onto the "top" of the stack and pushes the three downward.

The next word in the input stream can be found in the dictionary. + has been previously defined to "take the top two
numbers off the stack, add them, and push the result back onto the stack."

http://www.amresearch.com/starting_forth/sf1/sf1.html (7 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

The next word, ., is also found in the dictionary. It has been previously defined to take the number off the stack and print it at the terminal.

Postfix Power

Now wait, you say. Why does Forth want you to type

 3 4 +

instead of

 3 + 4

which is more familiar to most people?

Forth uses "postfix" notation (so called because the operator is affixed after the numbers) rather than "infix" notation (so called because the

operator is affixed in-between the numbers) so that all words which "need" numbers can get them from the stack.

For example:

● the word + gets two numbers from the stack and adds them;
● the word . gets one number from the stack and prints it;
● the word SPACES gets one number from the stack and prints that many spaces;
● the word EMIT gets a number that represents a character and prints that character;
● even the word STARS, which we defined ourselves, gets a number from the stack and prints that many stars.

When all operators are defined to work on the values that are already on the stack, interaction between many operations remains simple
even when the program gets complex.

Earlier we pointed out that Forth lets you execute a word in either of two ways: by simply naming it, or by putting it in the definition of
another word and naming that word. Postfix is part of what makes this possible.

Just as an example, let's suppose we wanted a word that will always add the number 4 to whatever number is on the stack (for no other
purpose than to illustrate our point). Let's call the word

 FOUR-MORE

http://www.amresearch.com/starting_forth/sf1/sf1.html (8 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

We could define it this way:

 : FOUR-MORE 4 + ;

and test it this way:

 3 FOUR-MORE . 7 ok

and again:

 -10 FOUR-MORE . -6 ok

The "4" inside the definition goes onto the stack, just as it would if it were outside a definition. Then the + adds the two numbers on the
stack. Since + always works on the stack, it doesn't care that the "4" came from inside the definition and the three from outside.

As we begin to give some more complicated examples, the value of the stack and of postfix arithmetic will become increasingly apparent
to you. The more operators that are involved, the more important it is that they all be able to "communicate" with each other.

Keep Track of Your Stack

We've just begun to demonstrate the philosophy behind the stack and postfix notation. Before we continue, however, let's look more
closely at the stack in action and get accustomed to its peculiarities.

Forth's stack is described as a "last-in, first-out" (LIFO). You can see from the earlier illustration why this is so. The three was pushed onto
the stack first, then the four pushed on top of it. Later the adding machine took the four off first because it was on top. Hence "last-in, first-
out."

In general, the only accessible value at any given time is the top value. Let's use another operation, the . to further demonstrate. Remember
that each . removes one number from the stack and prints it. Four dots, therefore, remove four numbers and print them.

 2 4 6 8 8 6 4 2 ok

The system reads input from left to right and executes each word in turn.

● For input, the rightmost value on the screen will end up on the top of the stack.
● For output, the rightmost value on the screen came from the bottom of the stack.

Let's see what kind of trouble we can get ourselves into. Type:

 10 20 30

(that's four dots) then RETURN. What you get is:

 10 20 30 30 20 10 0 Stack empty

Each dot removes one value. The fourth dot found that there was no value left on the stack to send to the terminal, and it told you so.

http://www.amresearch.com/starting_forth/sf1/sf1.html (9 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

This error is called "stack underflow." (Notice that a stack
underflow is not "ok.")

The opposite condition, when the stack completely fills up, is called
"stack overflow." The stack is so deep, however, that this condition
should never occur except when you've done something terribly
wrong.

It's important to keep track of new words' "stack effects"; that is,
the sort of numbers a word needs to have on the stack before you
execute it, and the sort of numbers it will leave on the stack
afterwards.

If you maintain a list of your newly created words with their
meanings as you go, you or anyone else can easily understand the
word's operations. In Forth, such a list is called a "glossary."

To communicate stack effects in a visual way, Forth programmers
conventionally use a special stack notation in their glossaries or tables of words. We're introducing the stack notation now so that you'll
have it under your belt when you begin the next chapter.

Here is the basic form:

 (before -- after)

The dash separates the things that should be on the stack (before you execute the word) from the things that will be left there afterwards.
For example, here's the stack notation for the word .:

 . (n --)

(The letter "n" stands for "number.") This shows that . expects one number on the stack (before) and leaves no number on the stack (after).

Here's the stack notation for the word +.

 + (n1 n2 -- sum)

When there is more than one n, we number them n1, n2, n3, etc., consecutively. The numbers 1 and 2 do not refer to a position on the
stack. Stack position is indicated by the order in which the items are written; the rightmost item on either side of the arrow is the topmost
item on the stack. For example, in the stack notation of +, the n2 is on top:

Since you probably have the hang of it by now, we'll be leaving out the symbol except when we feel it's needed for clarity. You can

usually tell where to press "return" because the computer's response is always underlined.

Here's a list of the Forth words you've learned so far, including their stack notations ("n" stands for number; "c" stands for character):

: xxxx yyy ; (--) Creates a new definition with the name xxx, consisting of word or words yyy.

http://www.amresearch.com/starting_forth/sf1/sf1.html (10 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

CR (--) Performs a carriage return and line feed at your terminal.

SPACES (n --) Prints the given number of blank spaces at your terminal.

SPACE (--) Prints one blank space at your terminal.

EMIT (c --) Transmits a character to the output device.

." xxx" (--) Prints the character string xxx at your terminal. The " character terminates the string.

+ (n1 n2 -- sum) Adds.

. (n --) Prints a number, followed by one space.

In the next chapter we'll talk about getting the computer to perform some fancier arithmetic.

Review of Terms

Compile
to generate a dictionary entry in computer memory from source text (the written-out form of a definition). Distinct from
"execute."

Dictionary
in Forth, a list of words and definitions including both "system" definitions (pre-defined) and "user" definitions (which
you invent). A dictionary resides in computer memory in compiled form.

Execute to perform. Specifically, to execute a word is to perform the operations specified in the compiled definition of the word.

Extensibility a characteristic of a computer language which allows a programmer to add new features or modify existing ones.

Glossary
a list of words defined in Forth, showing their stack effects and an explanation of what they do, which serves as a
reference for programmers.

Infix notation the method of writing operators between the operands they affect, as in "2 + 5."

Input stream
the text to be read by the text interpreter. This may be text that you have just typed in at your terminal, or it may be text
that is stored on disk.

Interpret
(when referring to Forth's text interpreter) to read the input stream, then to find each word in the dictionary or, failing
that, to convert it to a number.

LIFO
(last-in, first-out) the type of stack which Forth uses. A can of tennis balls is a LIFO structure; the last ball you drop in is
the one you must remove first.

Postfix notation
the method of writing operators after the operands they affect, as in "2 5 +" for "2 + 5." Also known as Revers Polish
Notation.

Stack
in Forth, a region of memory which is controlled in such a way that data can be stored or removed in a last-in, first-out
(LIFO) fashion.

Stack overflow the error condition that occurs when the entire area of memory allowed for the stack is completely filled with data.

Stack underflow the error condition that occurs when an operation expects a value on the stack, but there is no valid data on the stack.

Word in Forth, the name of a definition.

Problems -- Chapter 1

Note: before you work these problems, remember these simple rules:

 Every : needs a ;.

and

 Every ." needs a ".

1. Define a word called GIFT which, when executed, will type out the name of some gift. For example, you might try:

http://www.amresearch.com/starting_forth/sf1/sf1.html (11 sur 12) [05/03/2005 04:53:05]

Leo Brodie's Starting Forth - Chapter 1

 : GIFT ." Bookends " ;

Now define a word called GIVER which will print out a person's first name. Finally, define a word called THANKS which includes
the new Forth words GIFT and GIVER, and prints out a message something like this:

 Dear Stephanie,
 thanks for the Bookends. ok

[answer]
2. Define a word called TEN.LESS which takes a number on the stack, subtracts ten, and returns the answer on the stack. (Hint: you

can use +.) [answer]
3. After entering the words in Prob. 1, enter a new definition for GIVER to print someone else's name, then execute THANKS again.

Can you explain why THANKS still prints out the first giver's name? [answer]

http://www.amresearch.com/starting_forth/sf1/sf1.html (12 sur 12) [05/03/2005 04:53:05]

http://home.iae.nl/users/mhx/sf1/1-1.gfs
http://home.iae.nl/users/mhx/sf1/1-2.gfs
http://home.iae.nl/users/mhx/sf1/1-3.gfs
http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 2

2 How To Get Results
In this chapter, we'll dive right into some specifics that you need to know before we go on. Specifically, we'll introduce some
of the arithmetic instructions besides + and some special operators for rearranging the order of numbers on the stack, so that
you'll be able to write mathematical equations in Forth.

Forth Arithmetic -- Calculator Style

Here are the four simplest integer-arithmetic operators in Forth:

+ (n1 n2 -- sum) Adds.

- (n1 n2 -- diff) Subtracts (n1-n2).

* (n1 n2 -- prod) Multiplies.

/ (n1 n2 -- quot) Divides (n1/n2).

Unlike calculators, computer terminals don't have special keys for multiplication or division. Instead we use * and /.

In the first chapter, we learned that we can add two numbers by putting them both on the stack, then executing the word +,
then finally executing the word . (dot) to get the result printed at our terminal.

 17 5 + . 22 ok

We can use this method with all of Forth's arithmetic operators. In other words, we can use Forth like a calculator to get
answers, even without writing a "program." Try a multiplication problem:

 7 8 * . 56 ok

By now we've seen that the operator comes after the numbers. In the case of subtraction and division, though, we must also
consider the order of numbers ("7 - 4" is not the same as "4 - 7").

Just remember this rule:

To convert to postfix, simply move the operator to the end of the expression:

Infix Postfix

3 + 4 3 4 +

500 - 300 500 300 -

6 x 5 6 5 *

20 / 4 20 4 /

So to do the subtraction problem:

 7 - 4 =

simply type in

 7 4 - . 3 ok

For Adventuresome Newcomers Sitting at a Terminal

http://www.amresearch.com/starting_forth/sf2/sf2.html (1 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

If you're one of those people who like to fool around and figure things out for themselves without reading this
book, then you're bound to discover a couple of weird things. First off, as we told you, these operators are
integer operators. That not only means that you can't do calculations with decimal values, like

 10.00 2.25 +

it also means that you can only get integer results, as in

 21 4 / . 5 ok instead of 5.25 ok

Another thing is that if you try to multiply:

 10000000 1000 * .

or some such large numbers, you'll get a crazy answer. So we're telling you up front that with the operators
introduced so far and with . to print the results, you can't have any numbers that are higher than +2147483647 or
lower than -2147483648. Numbers within this range are called "single-length signed numbers."

Notice, in the list of Forth words a few pages back, the letter "n," which stands for "number." Since Forth uses
single-length numbers more often than other types of numbers, the "n" signifies that the number must be single-
length. And yes, there are other operators that extend this range ("double-length" operators, which are indicated
by "d").

All of these mysteries will be explained in time, so stay tuned.

The order of numbers stays the same. Let's try a division problem:

 20 4 / . 5 ok

The word / is defined to divide the second number on the stack by the top number.

What do you do if you have more than one operator in an expression, like:

 4 + (17 * 12)

you ask? Let's take it step-by-step: the parentheses tell you to first multiply seventeen by twelve, then add four. So in Forth
you would write:

 17 12 * 4 + . 208 ok

and here's why:

http://www.amresearch.com/starting_forth/sf2/sf2.html (2 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

17 and 12 go onto the stack. * multiplies them and returns the result.

Then the four goes onto the stack, on top of 204. + rolls out the adding machine and adds them
together, returning only the result.

Or suppose you want to add five numbers. You can do it in Forth like this:

 17 20 + 132 + 3 + 9 + . 181 ok

Now here's an interesting problem:

 (3 + 9) * (4 + 6)

To solve it we have to add three to nine first, then add four to six, then finally multiply the two
sums. In Forth, we can write

 3 9 + 4 6 + * . 120 ok

The picture at the right is showing what happens.

Notice that we very conveniently saved the sum twelve on the stack while we went on about the
business of adding four to six.

Remember that we're not concerned yet with writing definitions. We are simply using Forth as a calculator.

If you're like most beginners, you probably would like to try your hand at a few practice problems until you feel more
comfortable with postfix.

Postfix Practice Problems (Quizzie 2-a)

Convert the following infix equations to postfix "calculator style." For example,

 ab + c

would become

 a b * c +

1. c(a+b)
2. (3a - b) / 4 + c
3. (0.5 ab) / 100
4. (n + 1) / n
5. x(7x + 5)

Convert the following postfix expressions to infix:

6. a b - b a + /
7. a b 10 * /

[answer]

Forth Arithmetic -- Definition Style

http://www.amresearch.com/starting_forth/sf2/sf2.html (3 sur 13) [05/03/2005 04:53:30]

http://home.iae.nl/users/mhx/sf2/quizzie%202-a.gfs

Leo Brodie's Starting Forth - Chapter 2

In Chap. 1 we saw that we could define new words in terms of numbers and other
pre-defined words. Let's explore some further possibilities, using some of our
newly-learned math operators.

Let's say we want to convert various measurements to inches. We know that

 1 yard = 36 inches

and

 1 foot = 12 inches

so we can define these two words:

 : YARDS>IN 36 * ; ok
 : FT>IN 12 * ; ok

where the names symbolize "yards-to-inches" and "feet-to-inches." Here's what they do:

 10 YARDS>IN . 360 ok
 2 FT>IN . 24 ok

If we always want our result to be in inches, we can define:

 : YARDS 36 * ; ok
 : FEET 12 * ; ok
 : INCHES ; ok

So that we can use the phrase

 10 YARDS 2 FEET + 9 INCHES + . 393 ok

Notice that the word INCHES doesn't do anything except remind the human user what the nine is for. If we really want to get
fancy, we can add these three definitions:

 : YARD YARDS ; ok
 : FOOT FEET ; ok
 : INCH ; ok

so that the user can enter the singular form of any of the nouns and still get the same result:

 1 YARD 2 FEET + 1 INCH + . 61 ok
 2 YARDS 1 FOOT + . 84 ok

For Semantic Freaks

In mathematics, the word "argument" refers to an
independent variable of a function. Computer linguists
have borrowed this term to refer to numbers being
operated on by operators. They have also borrowed the
word "parameters" to describe pretty much the same
thing.

So far we have only defined words whose definitions contain a
single math operator. But it's perfectly possible to put many
operators inside a definition, if that's what you need to do.

Let's say we want a word that computes the sum of five
numbers on the stack. A few pages back we summed five
numbers like this:

 17 20 + 132 + 3 + 9 + . 181 ok

http://www.amresearch.com/starting_forth/sf2/sf2.html (4 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

But we can also enter

 17 20 132 3 9 + + + + . 181 ok

We get the same answer, even though we've clustered all the numbers into one group and all the operators into another group.
We can write our definition like this:

 : 5#SUM + + + + ; ok

and execute it like this:

 17 20 132 3 9 5#SUM . 181 ok

If we were going to keep 5#SUM for future use, we could enter it into our ever-growing glossary, along with a note that it
"expects five arguments" on the stack, which it will add together.

For Beginners Who Like Word Problems

If a jet
plane
flies at
an
average
air
speed
of 600
mph
and if it
flies with a tail wind of 25 mph, how far will it travel in five
hours?
If we define

 : FLIGHT-DISTANCE + * ;

we could enter

 5 600 25 FLIGHT-DISTANCE . 3125 ok

Try it with different values, including head winds (negative
values).

Here is another equation to write a definition for:

 (a + b) * c

As we saw in Quizzie 2-a, this expression can be written
in postfix as

 c a b + *

Thus we could write our definition

 : SOLUTION + * ; ok

as long as we make sure that we enter the arguments in
the proper order;

 c a b SOLUTION

Definition Style Practice
Problems (Quizzie 2-b)

Convert the following infix expressions into Forth
definitions and show the stack order required by your
definitions. Since this is Quizzie 2-b, you can name your
definitions 2B1, 2B2, etc.

1. ab + c would become : 2B1 * + ;
which expects this stack order: (c b a -- result)

2. (a - 4b) / 6 + c
3. a / (8b)
4. 0.5 ab / 100
5. a(2a + 3)
6. (a - b) / c

[answer]

http://www.amresearch.com/starting_forth/sf2/sf2.html (5 sur 13) [05/03/2005 04:53:30]

http://home.iae.nl/users/mhx/sf2/quizzie%202-b.gfs

Leo Brodie's Starting Forth - Chapter 2

The Division Operators

The word / is Forth's simplest division operator. Slash supplies only the quotient; any remainder is lost. If you type:

 22 4 / . 5 ok

You get only the quotient five, not the remainder two.

If you're thinking of a pocket calculator's per-cent operator, then five is not the full
answer.

But / is only one of several division operators supplied by Forth to give you the flexibility
to tell the computer exactly what you want it to do.

For example, let's say you want to solve this problem: "How many dollar bills can I get in
exchange for 22 quarters?" The real answer, of course, is exactly 5, not 5.5. A
computerized money changer, for example, would not know how to give you 5.5 dollar
bills.

Here are two more Forth divsion operators:

/MOD (n1 n2 -- rem quot) Divides. Returns the remainder and quotient.

MOD (n1 n2 -- rem) Returns the remainder from division.

These operators are both signed, and "truncating." We'll see what this means in the chapter on computer numbers.

/MOD gives both the remainder and the quotient; MOD (from "modulo") gives the remainder only. (For /MOD, the stack
notation in the table indicates that the quotient will be on top of the stack, and the remainder below. Remember, the rightmost
represents the topmost.)

Let's try the first one:

 22 4 /MOD . . 5 2 ok

Samurai /MOD (slash's older brother) Here /MOD performs the division and puts both the quotient
and the remainder on the stack. The first dot prints the
quotient because the quotient was on top.

With what we've learned so far, we can easily define this
word:

 : QUARTERS 4 /MOD . ." ones and "
 . ." quarters " ;

So that you can type:

 22 QUARTERS

with this result:

 22 QUARTERS 5 ones and 2 quarters

http://www.amresearch.com/starting_forth/sf2/sf2.html (6 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

ok

The second word in the table, MOD, leaves only the
remainder. For example in:

 22 4 MOD . 2 ok

the two is the remainder.

Stack Maneuvers

If you worked Prob. 6 in the last set, you discovered that the
infix equation

 (a - b) / c

cannot be solved with a definition unless there is some way to
rearrange values on the stack.

Well, there is a way: by using a "stack manipulation operator"
called SWAP.

SWAP

The word SWAP is defined to switch the order of the top two stack
items.

As with the other stack manipulation operators, you can test SWAP at
your terminal in "calculator style"; that is, it doesn't have to be contained
within a definition.

First enter

 1 2 . . 2 1 ok

then again, this time with SWAP:

 1 2 SWAP . . 1 2 ok

Thus Prob. 6 can be solved with this phrase:

 - SWAP /

with (c a b --) on the stack.

Let's give a, b, and c these test values:

 a = 10 b = 4 c = 2

then put them on the stack and execute the phrase, like so:

 2 10 4 - SWAP / . 3 ok

http://www.amresearch.com/starting_forth/sf2/sf2.html (7 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

Here is a list of several stack manipulation operators, including SWAP

SWAP (n1 n2 -- n2 n1) Reverses the top two stack items.

DUP (n -- n n) Duplicates the top stack item.

OVER (n1 n2 -- n1 n2 n1) Makes a copy of the second item and pushes it on top.

ROT (n1 n2 n3 -- n2 n3 n1) Rotates the third item to the top.

DROP (n --) Discards the top stack item.

DUP

The next stack manipulation operator on the list, DUP, simply makes a second copy
(duplicate) of the top stack item.

For example, if we have "a" on the stack, we can compute:

 a2

as follows:

 DUP *

in which the following steps occur:

Operation
Contents
of stack

 a

DUP a a

* a2

OVER

Now somebody tells you to evaluate the expression:

 a * (a + b)

given the following stack order:

 (a b --)

But, you say, I'm going to need a new manipulation operator: I want two copies of the "a," and the "a" is under the "b." Here's
the word you need: OVER. OVER simply makes a copy of the "a" and leapfrogs it over the "b":

 (a b -- a b a)

http://www.amresearch.com/starting_forth/sf2/sf2.html (8 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

Now the expression

 a * (a + b)

can easily be written

 OVER + *

Here's what happens:

Operation
Contents
of stack

 a b

OVER a b a

+ a (b+a)

* a*(b+a)

When writing equations in Forth, it's best to "factor them out" first. For example, if somebody asks you to evaluate:

 a2 + ab

in Forth, you'll find it quite complicated (and maybe even impossible) using the words we've introduced so far ... unless you
factor out the expression to read:

 a * (a + b)

which is the expression we just evaluated so easily.

ROT

The fourth stack manipulator on the list is ROT (pronounced rote), which is short for "rotate." ROT transforms the top three
stack values from (a b c) to (b c a).

For example, if we need to evaluate the expression:

 ab - bc

we should first factor out the "b"s:

 b * (a - c)

Now if our starting-stack order is this:

 (c b a --)

we can use:

 ROT - *

in which the following steps will occur:

http://www.amresearch.com/starting_forth/sf2/sf2.html (9 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

Operation
Contents
of stack

 c b a

ROT b a c

- b (a-c)

* b*(a-c)

DROP

The final stack manipulation operator on the list is DROP. All it does is discard the top stack value.

Pretty simple, huh? We'll see some good uses for DROP later on.

A Handy Hint

A Non-destructive Stack Print

Beginners who are just learning to manipulate numbers on the stack in useful ways very often find themselves typing a
series of dots to see what's on the stack after their manipulations. The problem with dots, though, is that they don't leave
the numbers on the stack for future manipulation.

The Forth word .S prints out all the values that happen to be on the stack "non-destructively"; that is, without removing
them. Let's test it, first with nothing on the stack:

 .S <0> ok

As you can see, in this version of .S (Gforth's), we see at least one number. This is the number of items actually on the
stack.

Now let's try with numbers on the stack:

 1 2 3 .S <3> 1 2 3 ok

 ROT .S <3> 2 3 1 ok

Stack Manipulation and Math Definitions (Quizzie 2-c)

1. Write a phrase which flips three items on the stack, leaving the middle number in the middle; that is,

 a b c becomes c b a

2. Write a phrase that does what OVER does, without using OVER.
3. Write a definition called -ROT, which rotates the top three stack items in the opposite direction from ROT; that is,

 a b c becomes c a b

Write definitions for the following equations, given the stack effects shown:

4. (n+1) / n (n -- result)

http://www.amresearch.com/starting_forth/sf2/sf2.html (10 sur 13) [05/03/2005 04:53:30]

Leo Brodie's Starting Forth - Chapter 2

5. x(7x + 5) (x -- result)
6. 9a2 - ba (a b -- result)

[answer]

Playing Doubles

The next four stack manipulation operators should look vaguely familiar:

2SWAP (d1 d2 -- d2 d1) Reverses the top two pairs of numbers.

2DUP (d -- d d) Duplicates the top pair of numbers.

2OVER (d1 d2 -- d1 d2 d1) Makes a copy of the second pair of numbers and pushes it on top.

2DROP (d --) Discards the top pair of numbers.

The prefix "2" indicates that these stack manipulation operators handle numbers

in pairs. The letter "d" in the stack effects column stands for "double."
"Double" has a special significance that we will discuss when we talk about "n"
and "u."

The "2"-manipulators listed above are so straightforward, we won't even bore
you with examples.

One more thing: there are still some stack manipulators we haven't talked about
yet, so don't go crazy by trying too much fancy footwork on the stack.

Here's a list of the Forth words we've covered in this chapter:

+ (n1 n2 -- sum) Adds.

- (n1 n2 -- diff) Subtracts (n1-n2).

* (n1 n2 -- prod) Multiplies.

/ (n1 n2 -- quot) Divides (n1/n2).

/MOD (n1 n2 -- rem quot) Divides. Returns the remainder and quotient.

MOD (n1 n2 -- rem) Returns the remainder from division.

SWAP (n1 n2 -- n2 n1) Reverses the top two stack items.

DUP (n -- n n) Duplicates the top stack item.

OVER (n1 n2 -- n1 n2 n1) Makes a copy of the second item and pushes it on top.

ROT (n1 n2 n3 -- n2 n3 n1) Rotates the third item to the top.

DROP (n --) Discards the top stack item.

2SWAP (d1 d2 -- d2 d1) Reverses the top two pairs of numbers.

2DUP (d -- d d) Duplicates the top pair of numbers.

2OVER (d1 d2 -- d1 d2 d1) Makes a copy of the second pair of numbers and pushes it on top.

2DROP (d --) Discards the top pair of numbers.

Review of Terms

http://www.amresearch.com/starting_forth/sf2/sf2.html (11 sur 13) [05/03/2005 04:53:30]

http://home.iae.nl/users/mhx/sf2/quizzie%202-c.gfs

Leo Brodie's Starting Forth - Chapter 2

Double-length numbers
integers which encompass a range of over -18,446,744,073,709,551,615 to
+18,446,744,073,709,551,615 (and which we'll introduce officially in Chap. 7).

Single-length numbers
integers which fall within the range of -2 billion to +2 billion: the only numbers which are valid as
the arguments or results of any of the operators we've discussed so far.

Problems -- Chapter 2

1. What's the difference between DUP DUP and 2DUP? [answer]
2. Write a phrase which will reverse the order of the top four items on the stack; that is,

 (1 2 3 4 -- 4 3 2 1)

[answer]
3. Write a definition called 3DUP which will duplicate the top three numbers on the stack; for example,

 (1 2 3 -- 1 2 3 1 2 3)

[answer]

Write definitions for the following infix equations, given the stack effects shown:
4. a2 + ab + c (c a b -- result) [answer]

5. (a-b) / (a+b) (a b -- result) [answer]

6. Write a set of words to compute prison sentences for hardened criminals such that the judge can enter:

 CONVICTED-OF ARSON HOMICIDE TAX-EVASION ok
 WILL-SERVE 35 years ok

or any series of crime beginning with the word CONVICTED-OF and ending with WILL-SERVE. Use these sentences

 HOMICIDE 20 years
 ARSON 10 years
 BOOKMAKING 2 years
 TAX-EVASION 5 years

[answer]
7. You're the inventory programmer at Maria's Egg Ranch. Define a word called EGG.CARTONS which expects on the

stack the total number of eggs laid by the chickens today and prints out the number of cartons that can be filled with a
dozen each, as well as the number of left-over eggs. [answer]

http://www.amresearch.com/starting_forth/sf2/sf2.html (12 sur 13) [05/03/2005 04:53:30]

http://home.iae.nl/users/mhx/sf2/2-1.gfs
http://home.iae.nl/users/mhx/sf2/2-2.gfs
http://home.iae.nl/users/mhx/sf2/2-3.gfs
http://home.iae.nl/users/mhx/sf2/2-4.gfs
http://home.iae.nl/users/mhx/sf2/2-5.gfs
http://home.iae.nl/users/mhx/sf2/2-6.gfs
http://home.iae.nl/users/mhx/sf2/2-7.gfs

Leo Brodie's Starting Forth - Chapter 2

http://www.amresearch.com/starting_forth/sf2/sf2.html (13 sur 13) [05/03/2005 04:53:30]

http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 3

3 The Editor (And Staff)
Up till now you've been compiling new definitions into the dictionary by typing them at your terminal. This
chapter introduces an alternate method, using disk storage.

Let's begin with some observations that specifically concern the dictionary.

Another Look at the Dictionary

If you've been experimenting with a real computer, you may have discovered some things we haven't mentioned
yet. In any case, it's time to mention them.

Discovery One: You can define the same word more than once in different ways--
only the most recent definition will be executed.

For example, if you have entered:

 : GREET ." Hello, I speak Forth. " ; ok

then you should get this result:

 GREET Hello, I speak Forth. ok

And if you redefine:

 : GREET ." Hi there! " ; ok

you get the most recent definition:

 GREET Hi there! ok

Has the first GREET been erased? No, it's still there, but the most recent GREET is executed because of the search
order. The text interpreter always starts at the "back of the dictionary" where the most recent entry is. The
definition he finds first is the one you defined last. This is the one he shows to EXECUTE.

We can prove that the old GREET is still there. Try this:

 FORGET GREET ok

and

 GREET Hello, I speak Forth. ok

http://www.amresearch.com/starting_forth/sf3/sf3.html (1 sur 6) [05/03/2005 04:53:43]

Leo Brodie's Starting Forth - Chapter 3

(the old GREET again!)

The word FORGET looks up a given word in the dictionary and, in effect, removes it from the dictionary along
with anything you may have defined since that word. FORGET, like the interpreter, searches starting from the
back; he only removes the most recently defined versions of the word (along with any words that follow). So now
when you type GREET at the terminal, the interpreter finds the original GREET.

FORGET is a good word to know; he helps you to weed out your dictionary so it won't overflow. (The dictionary
takes up memory space, so as with any other use of memory, you want to conserve it.)

Some Forths do not have FORGET. In that case you need to plan the forgetting in advance, e.g.:

 MARKER -work

defines the null definition -work to mark the current system state for you. When you execute -work at some
later time, the system state is restored to that in effect when -work was defined. In particular, all words defined
after the marker word -work are completely removed from the dictionary.

Discovery Two: When you enter definitions from the terminal (as you have been

doing), your source text is not saved.

Only the compiled form of your definition is saved in the dictionary. So what if you want to make a minor change
to a word already defined? This is where a "text editor" comes in. With this editor, you can save your source text
and modify it if you want to. In this day and age we can assume that everyone has access to a text editor. The
documentation of your Forth system should discuss the procedures to easily use your favorite text editor from
within the Forth environment. (On a modern OS, double-click the file you want to edit. After finishing your
editing business, type INCLUDE on the Forth commandline. Add at least one trailing space, then drag your file in
the Forth window and drop it on the commandline. Type .)

A text editor stores your source text on disk. So we'd better introduce the disk and the way the Forth system uses
it.

How Forth Uses the Disk

All Forth systems use disk memory. Even though disk memory is not absolutely necessary for a Forth system, it's

http://www.amresearch.com/starting_forth/sf3/sf3.html (2 sur 6) [05/03/2005 04:53:43]

Leo Brodie's Starting Forth - Chapter 3

difficult to imagine Forth without it.

To understand what disk memory does, compare it with computer memory (RAM). The difference is analogous
to the difference between a filing cabinet and a rolling card-index.

So far you've been using computer memory, which is like the card index. The computer can access this memory
almost instantaneously, so programs that are stored in RAM can run very fast. Unfortunately, this kind of
memory is sometimes very limited (e.g. in embedded controllers) and relatively expensive.

On the other hand, the disk is called a "bulk memory" device, because, like a filing cabinet, it can store a lot of
information at a much cheaper price per unit of information than the memory inside the computer.

Both kinds of memory can be written to and read from.

The compiler compiles all dictionary entries into computer memory so that the definitions will be quickly
accessible. The perfect place to store source text, however, is on the disk, which is what Forth does. You can
either send source text directly from the keyboard to the interpreter (as you have been doing), or you can save
your source text on the disk and then later read it off the disk and send it to the text interpreter.

Disk memory is divided into
units called "blocks." Each block
holds 1,024 characters of source
text or binary data, traditionally
organized as 16 lines of 64
characters. The ANS Forth
standard does not specify how
many blocks there are. The
documentation of your Forth
system should tell you this.

With current Forths, disk
memory resides in OS files.
There are ways to attach specific
OS files to the "Forth disk." Due
to the special 16 by 64 format of
Forth blocks, OS utilities
consider them as binary data and
cannot generally print, list, filter
or edit them. Forth systems have
standardized facilities to handle some of these tasks by themselves.

Assuming you are using Gforth or iForth, then the following should instruct disk memory to come from some
file:

 USE blocks.gfb ok

To list a block, simply type the block-number and the word LIST, as in:

 1 LIST
 0

http://www.amresearch.com/starting_forth/sf3/sf3.html (3 sur 6) [05/03/2005 04:53:43]

http://home.iae.nl/users/mhx/sf3/blocks.gfb
http://home.iae.nl/users/mhx/sf3/blocks.gfb

Leo Brodie's Starting Forth - Chapter 3

 1 (Large letter F MHX 21:29 07/01/89)
 2
 3 : STAR [CHAR] * EMIT ;
 4 : STARS 0 DO STAR LOOP ;
 5 : MARGIN CR 30 SPACES ;
 6 : BLIP MARGIN STAR ;
 7 : BAR MARGIN 5 STARS ;
 8 : F BAR BLIP BAR BLIP BLIP CR ;
 9
 10
 11
 12
 13
 14
 15
 ok

The above is what a block looks like when it's listed on your terminal.

To give you a better idea of how all of this could be used, we'll assume that block 1 contains the definitions
shown above. Except for line 1, everything looks familiar: these are the definitions you used to print a large letter
"F" at your terminal.

Now if you were to type:

 1 LOAD
 F

you would send block 1 to the input stream and then on to the text interpreter. The text interpreter does not care
where his text comes from. Recognizing the colons, he will have all the definitions compiled, and then will
execute the new word F.

(interpret ...)
Now for the unfinished business: line 1. The words inside the parentheses are
for humans only; they are neither compiled nor executed. The word ((left
parenthesis) tells the text interpreter to skip all the following text up to the
terminating right parenthesis. Because (is a word, it must be set off with a
space. The closing parenthesis is not a word, it is simply a character that is
looked for by (, called a delimiter. (Recall that the delimiter for ." is the closing
quote mark.)

To summarize, the three ANS Forth commands we've learned so far that
concern disk blocks are:

LIST (n --) Lists a disk block.

LOAD (n --) Loads a disk block (compiles or executes).

http://www.amresearch.com/starting_forth/sf3/sf3.html (4 sur 6) [05/03/2005 04:53:43]

Leo Brodie's Starting Forth - Chapter 3

(xxx) (--)
Causes the string xxx to be ignored by the text
interpreter. The character) is the delimiter.

Block-buffer Basics

We have discussed blocks mainly because of historical reasons. Blocks are hardly ever used for source text
storage any more. The preferred way to handle source is in standard text files, using the word INCLUDE to load
them:

 INCLUDE blocks.gfs ok

The main advantage is that blocks.gfs can be edited and managed with standard text file utilities.

However, now we're at it, we'll mention a few other words to access and modify blocks on disk.

The basic word that brings a block in from the disk, after first finding an available buffer and storing its contents
on disk if necessary, is BLOCK. For instance, if you say

 1 BLOCK

the system will copy block 1 of the currently open file into one of the system buffers. BLOCK also leaves on the
stack the address of the beginning of the buffer (1024 bytes, remember) that it used. The contents of this buffer
are guaranteed to stay valid until you execute a word from the set of procedures with "multitasking impact," like
EMIT or TYPE. If you at any time modify the buffer contents and then execute the word UPDATE, Forth will
remember to first write the block back to disk when it needs to reuse the buffer. If, for some reason, you execute
UPDATE and then decide that you don't want to have the blocks rewritten after all, use EMPTY-BUFFERS to
invalidate them. This works because Forth does not immediately write the disk after you use UPDATE. To force
writing out the buffers right now, use the word FLUSH.

Here's a list of the Forth words we've covered in this chapter:

USE xxx (--) Designate OS text file xxx as the "Forth disk."

LIST (n --) Lists a disk block.

LOAD (n --) Loads a disk block (compiles or executes).

(xxx) (--)
Causes the string xxx to be ignored by the text interpreter. The character) is the
delimiter.

UPDATE (--)
Marks the most recently referenced block as modified. The block will later be
automatically transferred to mass storage if its buffer is needed to store a
different block or if FLUSH is executed.

EMPTY-BUFFERS (--)
Marks all block buffers as empty without necessarily affecting their actual
contents. Updated blocks are not written to mass storage.

BLOCK (u -- addr)

Leaves the address of the first byte in block u. If the block is not already in
memory, it is transferred from mass storage into whichever memory buffer has
been least recently accessed. If the block occupying that buffer has been updated
(i.e., modified), it is rewritten onto mass storage before block u is read into the
buffer.

http://www.amresearch.com/starting_forth/sf3/sf3.html (5 sur 6) [05/03/2005 04:53:43]

http://home.iae.nl/users/mhx/sf3/blocks.gfs

Leo Brodie's Starting Forth - Chapter 3

INCLUDE xxx (--) Load the text file xxx (compiles or executes).

FORGET xxx (--) Forgets all definitions back to and including xxx.

MARKER xxx (--)
Creates a word xxx which, when executed, restores the dictionary to the state it
had just prior to the definition of xxx. In particular, remove xxx and all
subsequent word definitions.

Review of Terms

Block in Forth, a division of disk memory containing up to 1024 characters of source text.

Buffer a temporary storage area for data.

Null definition

a definition that does nothing, written in the form:

: NAME ;

that is, a name only will be compiled into the dictionary. A null definition serves as a
"bookmark" in the dictionary, for FORGET to find.

Pointer
a location in memory where a number can be stored (or changed) as a reference to something
else.

Source text
in Forth, the written-out form of a definition or definitions in English-like words and
punctuation, as opposed to the compiled form that is entered into the dictionary.

http://www.amresearch.com/starting_forth/sf3/sf3.html (6 sur 6) [05/03/2005 04:53:43]

http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 4

4 Decisions, Decisions, ...
In this chapter we'll learn how to program the computer to make "decisions." This is the moment when you turn your computer into
something more than an ordinary calculator.

The Conditional Phrase

Let's see how to write a simple decision-making statement in Forth. Imagine we are programming a mechanical egg-carton packer.
Some sort of mechanical device has counted the eggs on the conveyor belt, and now we have the number of eggs on the stack. The
Forth phrase:

 12 = IF FILL-CARTON THEN

tests whether the number on the stack is equal to 12, and if it is, the word FILL-CARTON is executed. If it's not, execution moves
right along to the words that follow THEN.

The word = takes two values of the stack and compares them to see if they are equal.

If the condition is true, IF allows the flow of execution to continue with the next word in the definition.

But if the condition is false, IF causes the flow of execution to skip to THEN, from which point execution will proceed.

Let's try it. Define this example word:

 : ?FULL 12 = IF ." It's full " THEN ; ok
 11 ?FULL ok
 12 ?FULL It's full ok

http://www.amresearch.com/starting_forth/sf4/sf4.html (1 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

Notice: an IF...THEN statement must be contained within a definition. You can't just enter these words in "calculator style."

Don't be misled by the traditional English meanings of the Forth words IF and THEN. The words that follow IF are executed if the
condition is true. The words that follow THEN are always executed, as though you were telling the computer, "After you make the
choice, then continue with the rest of the definition." (In this example, the only word after THEN is ;, which ends the definition.)

Let's look at another example. This definition checks whether the temperature of a laboratory boiler is too hot. It expects to find the
temperature on the stack:

 : ?TOO-HOT 220 > IF ." Danger -- reduce heat " THEN ;

If the temperature on the stack is greater than 220, the danger message will be printed at the terminal. You can execute this one
yourself, by entering the definition, then typing in a value just before the word.

 290 ?TOO-HOT Danger -- reduce heat ok
 130 ?TOO-HOT ok

Remember that every IF needs a THEN to come home to. Both words must be in the same definition.

Here is a partial list of comparison operators that you can use before an IF...THEN statement:

=

<

>

0=

0<

0>

The words < and > expect the same stack order as the arithmetic operators, that is:

Infix Postfix

2 < 10 is equivalent to 2 10 <

17 > -39 is equivalent to 17 -39 >

The words 0=, 0< and 0> expect only one value on the stack. The value is compared with zero.

Another word, INVERT, doesn't test any value at all; it simply reverses whatever condition has just been tested. For example, the
phrase:

 ... = INVERT IF ...

will execute the words after IF, if the two numbers on the stack are not equal.

The Alternative Phrase

http://www.amresearch.com/starting_forth/sf4/sf4.html (2 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

Forth allows you to provide an alternative phrase in an IF statement, with the word ELSE.

The following example is a definition which tests whether a given number is a valid day of the month:

 : ?DAY 32 < IF ." Looks good " ELSE ." no way " THEN ;

If the number on the stack is less than thirty-two, the message "Looks good" will
be printed. Otherwise, "no way" will be printed.

Imagine that IF pulls a railroad-track switch, depending on the outcome of the test.
Execution then takes one of two possible routes, but either way, the tracks rejoin at
the word THEN.

By the way, in computer terminology, this whole business of rerouting the path of

execution is called "branching."

Here's a more useful example. You know that dividing any number by zero is
impossible, so if you try it on a computer, you'll get an incorrect answer. We might
define a word which only performs division if the denominator is not zero. The
following definition expects stack items in this order:

 (numerator denominator --)
 : /CHECK
 DUP 0= IF ." invalid " DROP
 ELSE /

 THEN ;

Notice that we first have to DUP the denominator because the phrase

 0= IF

will destroy it in the process.

Also notice that the word DROP removes the denominator if division won't be performed, so that whether we divide or not, the stack
effect will be the same.

Nested IF...THEN Statements

It's possible to put an IF...THEN (or IF...ELSE...THEN) statement inside another IF...THEN statement. In fact, you can get as
complicated as you like, so long as every IF has one THEN.

Consider the following definition, which determines the size of commercial eggs (extra large, large, etc.) given their weight in ounces
per dozen:

 : EGGSIZE DUP 18 < IF ." reject " ELSE
 DUP 21 < IF ." small " ELSE
 DUP 24 < IF ." medium " ELSE
 DUP 27 < IF ." large " ELSE
 DUP 30 < IF ." extra large " ELSE
 ." error "
 THEN THEN THEN THEN THEN DROP ;

Once EGGSIZE has been entered, here are some results you'd get:

 23 EGGSIZE medium ok

http://www.amresearch.com/starting_forth/sf4/sf4.html (3 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

 29 EGGSIZE extra large ok
 40 EGGSIZE error ok

We'd like to point out a few things about EGGSIZE:

The entire definition is a series of "nested" IF...THEN statements. The word "nested" does not refer to the fact that we're dealing with
eggs, but to the fact that the statements nest inside one another, like a set of mixing bowls.

The five THENs at the bottom close off the five IFs in reverse order, that is:

Also notice that a DROP is necessary at the end of the definition to get rid of the original value.

Finally, notice that the definition is visually organized to be read easily by human beings. Most Forth programmers would rather
waste a little space than let things get any more confused than they have to be.

A Closer Look at IF

How does the comparison operator (=, <, >, or whichever) let IF know
whether the condition is true or false? By simply leaving TRUE or
FALSE on the stack. A TRUE (all bits high) means that the condition is
true; a FALSE (all bits low) means that the condition is false.

In computer jargon, when one piece of program leaves a value as a signal
for another piece of program, that value is called a "flag."

Try entering the following phrases at the terminal, letting . show you
what's on the stack as a flag.

 5 4 > . -1 ok
 5 4 < . 0 ok

(It's ok to use comparison operators directly at your terminal like this, but
remember that an IF...THEN statement must be wholly contained within a
definition because it involves branching.)

IF will take a TRUE as a flag that means true and a FALSE as a flag that means false. Now let's take a closer look at INVERT, which
reverses the flag on the stack.

 FALSE INVERT . -1 ok
 TRUE INVERT . 0 ok

Now we'll let you in on a little secret: IF will take any non-zero value to mean true.

To prove it, try entering this test:

http://www.amresearch.com/starting_forth/sf4/sf4.html (4 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

 : TEST IF ." non-" THEN ." zero " ;

Even though there is no comparison operator in the above definition, you'll still get

 0 TEST zero ok
 1 TEST non-zero ok
 -400 TEST non-zero ok

So what, you ask? Well, the fact that an arithmetic zero is identical to a flag that means "false" leads to some interesting results.

For one thing, if all you want to test is whether a number is zero, you don't need a comparison operator at all. For example, a slightly
simpler version of /CHECK, which we saw earlier, could be

 : /CHECK DUP IF / ELSE ." invalid " THEN DROP ;

Here's another interesting result. Say you want to test whether a number is an even multiple of ten, such as 10, 20, 30, 40 etc. You
know that the phrase

 10 MOD

divides by ten and returns the remainder only. An even multiple of ten would produce a zero remainder, so the phrase

 10 MOD 0=

gives the appropriate "true" or "false" flag.

Still another interesting result is that you can use - (minus) as a comparison operator which tests whether two values are "not equal."
When you subtract two equal numbers, you get zero (false); when you subtract two unequal numbers, you get a non-zero value.
However, now we must talk a bit about "well-formed flags."

If you think about it, both 0= and INVERT do almost the same thing. However, 0= changes the number 0 to the number -1 and any
non-zero number to 0, while INVERT changes all zero bits in a number to one bits and the one bits in that number to zero bits. Only
when the number is a "well-formed flag", i.e., either 0 or -1, the result of 0= and INVERT is the same. All comparison operators
return well-formed flags, fit for either 0= or INVERT. However, when you use - to compare two numbers, as we did above, the flag
will not be well-formed when the two numbers differ in value, and only 0= can be used to safely reverse the meaning of the
comparison.

A final result is described in the next section.

A Little Logic

It's possible to take several flags from various tests and combine them into a single flag for one IF statement. You might combine
them as an "either/or" decision, in which you make two comparison tests. If either or both of the tests are true, then the computer will
execute something. If neither is true, it won't.

Here's a rather simple-minded example, just to show you what we mean. Say you want to print the name "ARTICHOKE" if an input
number is either negative or a multiple of ten.

How do you do this in Forth? Consider the phrase:

 DUP 0< SWAP 10 MOD 0= +

Here's what happens when the input number is say, 30:

Operator Contents of stack Operation

 30

http://www.amresearch.com/starting_forth/sf4/sf4.html (5 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

DUP 30 30 Duplicates it so we can test it twice.

0< 30 0 Is it negative? No (zero).

SWAP 0 30 Swaps the flag with the number.

10 MOD 0= 0 -1 Is it evenly divisible by 10? Yes (true).

+ -1 Add the flags.

Adds the flags? What happens when you add flags? Here are four possibilities:

Lo and behold, the result flag is true if either or both conditions are true. In this example, the result is -1, which means "true." If the
input number had been -30, then both condition would have been true and the sum would have been minus two. Minus two is, of
course, non-zero. So as far as IF is concerned, -2 is as true as -1.

Our simple-minded definition, then would be:

 : VEGETABLE DUP 0< SWAP 10 MOD 0= +
 IF ." ARTICHOKE " THEN ;

Here is an improved version of a previous example called ?DAY.

The old ?DAY only caught entries over thirty-one. But negative numbers shouldn't be allowed either. How about this:

 : ?DAY DUP 1 < SWAP 31 > +
 IF ." No way " ELSE ." Looks good " THEN ;

The above two examples will always work because any "true" flags will always be exactly "-1." In some cases, however, a flag may
be any non-zero value, not just "-1," in which case it's dangerous to add them with +. For example:

 1 -1 + . 0 ok

gives us a mathematically correct answer, but not the answer we want if 1 and -1 are flags.

For this reason, Forth supplies a word called OR, which will return the correct flag even in case of 1 and -1. An "or decision" is the
computer term for the kind of flag we've been discussing. For example, if either the front door or the back door is open (or both), flies
will come in.

Another kind of decision is called an "and" decision. In an "and" decision, both conditions must be true for the result to be true. For
example, the front door and the back door must both be open for a breeze to come through. If there are three or more conditions, they
must all be true.

For the Curious Newcomer

http://www.amresearch.com/starting_forth/sf4/sf4.html (6 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

The use of words like "or" and "and" to structure part of an application is called "logic." A form of notation for logical statements was
developed in the nineteenth century by George Boole; it is now called Boolean algebra. Thus the term "a Boolean flag" (or even just "a
Boolean") simply refers to a flag that will be used in a logical statement.

How can we do this "and decision" in Forth? By using the handy word AND. Here's what AND would do with the four possible
combinations of flags we saw earlier:

In other words, only the combination "-1 -1 AND" produces a result of "true." Let's say we're looking for a cardboard box that's big
enough to fit a disk drive which measures:

 height 6"
 width 19"
 length 22"

The height, width, and length requirements all must be satisfied for the box to be big enough. If we have the dimensions on the stack,
then we can define:

 : BOXTEST (length width height --)
 6 > ROT 22 > ROT 19 > AND AND
 IF ." Big enough " THEN ;

Notice that we've put a comment inside the definition, to remind us of stack effects. This is particularly wise when the stack order is
potentially confusing or hard to remember.

You can test BOXTEST with the following phrase:

 23 20 7 BOXTEST Big enough ok

As your applications become more sophisticated, you will be able to write statements in Forth that look like postfix English and are
very easy to read. Just define the individual words within the definition to check some condition somewhere, then leave a flag on the
stack.

An example is:

 : SNAPSHOT LIGHT? FILM? AND IF PHOTOGRAPH THEN ;

which checks that there is available light and that there is film in the camera before taking the picture. Another example, which might
be used in a computer-dating application, is:

 : MATCH
 HUMOROUS SENSITIVE AND
 ART.LOVING MUSIC.LOVING OR AND
 SMOKING 0= AND

http://www.amresearch.com/starting_forth/sf4/sf4.html (7 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

 IF ." I have someone you should meet " THEN ;

where words like HUMOROUS and SENSITIVE have been defined to check a record in a disk file that contains information on other
applicants of the appropriate sex.

Two Words with Built-in IF

?DUP

The word ?DUP duplicates the top stack value only if it is non-zero. This can eliminate a few surplus words. For example, the
definition:

 : /CHECK DUP IF / ELSE DROP THEN ;

can be shortened to

 : /CHECK ?DUP IF / THEN ;

ABORT"

It may happen that somewhere in a complex application an error might occur (such as a division by zero), way down in one of the
low-level words. When this happens you don't just want the computer to keep on going, and you also don't want it to leave anything
on the stack.

If you think such an error might occur, you can use the word ABORT". ABORT" expects a flag on the stack: a "true" flag tells it to
"abort," which in turn clears the stacks and returns execution to the terminal, waiting for someone to type something. ABORT" also
prints the name of the last interpreted word, as well as whatever message you want.

Let's illustrate. We hope you're not sick of /CHECK by now, because here is yet another version:

 : /CHECK DUP 0= ABORT" zero denominator " / ;

In this version, if the denominator is zero, any numbers that happen to be on the stack will be dropped and the terminal will show:

 8 0 /CHECK
 the terminal:1: zero denominator
 8 0 /CHECK
 ^^^^^^

 Backtrace:
 $A033A58 throw
 $A054648

Just as an experiment, try putting /CHECK inside another definition:

 : ENVELOPE /CHECK ." The answer is " . ;

and try

 8 4 ENVELOPE The answer is 2 ok
 8 0
 the terminal:1: zero denominator
 8 0 ENVELOPE
 ^^^^^^^^
 Backtrace:
 $A033A58 throw
 $A054648

http://www.amresearch.com/starting_forth/sf4/sf4.html (8 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

 $A05466C /CHECK

The point is that when /CHECK aborts, the rest of ENVELOPE is skipped. Also notice that the name ENVELOPE, not /CHECK, is
printed.

A useful word to use in conjunction with ABORT" is ?STACK, which checks for stack underflow and returns a true flag if it finds it.
Thus the phrase:

 ?STACK ABORT" stack empty "

aborts if the stack has underflowed.

Forth uses the identical phrase, in fact. But it waits until all your definitions have stopped executing before it performs the ?STACK
test, because checking continuously throughout execution would needlessly slow down the computer. You're free to insert a ?STACK
ABORT" phrase at any critical or not-yet-tested portion of your application.

For Computer Philosophers

Forth provides certain error checking automatically. But because the Forth operating system is so easy to modify, users can readily control
the amount of error checking their system will do. This flexibility lets users make their own tradeoffs between convenience and execution
speed.

Here's a list of the Forth words we've covered in this chapter:

IF xxx
ELSE yyy
THEN zzz

IF: (f --)
If f is true (non-zero) executes xxx; otherwise executes yyy; continues execution with zzz
regardless. The phrase ELSE yyy is optional.

= (n1 n2 -- f) Returns true if n1 and n2 are equal.

- (n1 n2 -- n-diff) Returns true (i.e., the non-zero difference) if n1 and n2 are not equal.

< (n1 n2 -- f) Returns true if n1 is less than n2.

> (n1 n2 -- f) Returns true if n1 is greater than n2.

0= (n -- f) Returns true if n is zero (i.e., reverse the truth value).

0< (n -- f) Returns true if n is negative.

0> (n -- f) Returns true if n is positive.

AND (n1 n2 -- and) Returns the logical AND.

OR (n1 n2 -- or) Returns the logical OR.

?DUP
(n -- n n) or
(0 -- 0)

Duplicates only if n is non-zero.

ABORT" xx" (f --)
If the flag is true, types out an error message, followed by the text. Also clears the stacks and
returns control to the terminal. If false, takes no action.

?STACK (-- f) Returns true if a stack underflow condition has occurred.

Review of Terms

Abort
as a general computer term, to abruptly cease execution if a condition occurs which the program is not
designed to handle, in order to avoid producing nonsense or possibly doing damage.

"And" decision two conditions that are combined such that if both of them are true, the result is true.

Branching
breaking the normally straightforward flow of execution, depending on conditions in effect at the time of
execution. Branching allows the computer to respond differently to different conditions.

Comparison operator
in general, a command that compares one value with another (for example, determines whether one is greater
than the other), and sets a flag accordingly, which normally will be checked by a conditional operator. In
Forth, a comparison operator leaves the flag on the stack.

http://www.amresearch.com/starting_forth/sf4/sf4.html (9 sur 11) [05/03/2005 04:54:02]

Leo Brodie's Starting Forth - Chapter 4

Flag
as a general computer term, a value stored in memory which serves as a signal as to whether some known
condition is true or false. Once the "flag is set," any number of routines in various parts of a program may
check (or reset) the flag, as necessary.

Logic
in computer terminology, the system of representing conditions in the form of "logical variables," which can
be either true or false, and combining these variables using such "logical operators" as "and," "or," and "not,"
to form statements which may be true or false.

Nesting placing a branching structure within an outer branching structure.

"Or" decision two conditions that are combined such that if either one of them is true, the result is true.

Problems -- Chapter 4

1. What will the phrase

 0= 0=

leave on the stack when the argument is

-1?
0?
200?

[answer]
2. Explain what an artichoke has to do with any of this.
3. Define a word called CARD which, given a person's age on the stack, prints out either of these two messages (depending on

the relevant laws in your area):

 ALCOHOLIC BEVERAGES PERMITTED or
 UNDER AGE

[answer]
4. Define a word called SIGN.TEST that will test a number on the stack and print out one of three messages:

 POSITIVE or
 ZERO or
 NEGATIVE

[answer]
5. In Chap. 1, we defined a word called STARS in such a way that it always prints at least one star, even if you say

 0 STARS * ok

Using the word STARS, define a new version of STARS that corrects this problem. [answer]
6. Write the definition for the word WITHIN which expects three arguments:

 (n lo-limit hi-limit --)

and leaves a "true" flag only if "n" is within the range

http://www.amresearch.com/starting_forth/sf4/sf4.html (10 sur 11) [05/03/2005 04:54:02]

http://home.iae.nl/users/mhx/sf4/4-1.gfs
http://home.iae.nl/users/mhx/sf4/4-3.gfs
http://home.iae.nl/users/mhx/sf4/4-4.gfs
http://home.iae.nl/users/mhx/sf4/4-5.gfs

Leo Brodie's Starting Forth - Chapter 4

 low-limit <= n < hi-limit

[answer]
7. Here's a number-guessing game (which you may enjoy writing more than anyone will enjoy playing). First you secretly enter

a number onto the stack (you can hide your number after entering it by executing the word PAGE, which clears the terminal
screen). Then you ask another player to enter a guess followed by the word GUESS, as in

 100 GUESS

The computer will either respond "TOO HIGH," "TOO LOW," or "CORRECT!" Write the definition of GUESS, making sure
that the answer-number will stay on the stack through repeated guessing until the correct answer is guessed, after which the
stack should be clear. [answer]

8. Using nested tests and IF..ELSE...THEN statements, write a definition called SPELLER which will spell out a number on the
stack, from -4 to 4. If the number is outside this range, it will print the message "OUT OF RANGE." For example:

 2 SPELLER two ok
 -4 SPELLER negative four ok
 7 SPELLER OUT OF RANGE ok

Make it as short as possible. (Hint: The Forth word ABS gives the absolute value of a number on the stack.) [answer]
9. Using your definition of WITHIN from Prob. 6, write another number-guessing game, called TRAP, in which you first enter a

secret value, then a second player tries to home in on it by trapping it between two numbers, as in this dialogue:

 0 1000 TRAP BETWEEN ok
 330 660 TRAP BETWEEN ok
 440 550 TRAP NOT BETWEEN ok
 330 440 TRAP BETWEEN ok

and so on, until the player guesses the answer:

 391 391 TRAP YOU GOT IT! ok

Hint: you may have to modify the arguments to WITHIN so that TRAP does not say "BETWEEN" when only one of the
arguments is equal to the hidden value. [answer]

http://www.amresearch.com/starting_forth/sf4/sf4.html (11 sur 11) [05/03/2005 04:54:02]

http://home.iae.nl/users/mhx/sf4/4-6.gfs
http://home.iae.nl/users/mhx/sf4/4-7.gfs
http://home.iae.nl/users/mhx/sf4/4-8.gfs
http://home.iae.nl/users/mhx/sf4/4-9.gfs
http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 5

5 The Philosophy of Fixed Point
In this chapter we'll introduce a new batch of arithmetic operators. Along the way we'll tackle the problem of handling decimal points
using only whole-number arithmetic.

Quickie Operators

Let's start with the real easy stuff. You should have no trouble figuring out what the words in the following table do.

1+ (n -- n+1) Adds one.

1- (n -- n-1) Subtracts one.

2+ (n -- n+1) Adds two.

2- (n -- n-2) Subtracts two.

2* (n -- n*2) Multiplies by two (arithmetic left shift).

2/ (n -- n/2) Divides by two (arithmetic right shift).

The reason they have been defined as words in your Forth system is that they are used very frequently in most applications and even in
the Forth system itself.

The only reason to use a word such as 1+, instead of one and +, is tradition. In modern Forths 1+ saves neither space nor compile or
execution time.

Miscellaneous Math Operators

Aunt Min
and

Uncle Max

Here's a table of four miscellaneous math operators. Like the quickie operators, these functions should be obvious
from their names.

ABS (n -- |n|) Returns the absolute value.

NEGATE (n -- -n) Changes the sign.

MIN (n1 n2 -- n-min) Returns the minimum.

MAX (n1 n2 -- n-max) Returns the maximum.

Here are two simple word problems, using ABS and MIN:

ABS
Write a definition which computes the difference between two numbers, regardless of the order in which the numbers are entered.

 : DIFFERENCE - ABS ;

This gives the same result whether we enter

 52 37 DIFFERENCE . 15 ok

http://www.amresearch.com/starting_forth/sf5/sf5.html (1 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

 37 52 DIFFERENCE . 15 ok

MIN
Write a definition which computes the commission that furniture salespeople will receive if they've been promised $50 or 1/10 of the
sales price, whichever is less, on each sale they make.

 : COMMISSION 10 / 50 MIN ;

Three different values would produce these results:

 600 COMMISSION . 50 ok
 450 COMMISSION . 45 ok
 50 COMMISSION . 5 ok

The Return Stack

We mentioned before that there were still some stack manipulation operators we hadn't discussed yet. Now it's time.

Up till now we've been talking about "the stack" as if there were only one. But in fact there are two: the "parameter stack" and the
"return stack." The parameter stack is used more often by Forth programmers, so it's simply called "the stack" unless there is cause for
doubt.

As you've seen, the parameter stack holds parameters (or "arguments") that are being passed from word to word. The return stack,
however, holds any number of "pointers" which the Forth system uses to make its merry way through the maze of words that are
executing other words. We'll elaborate later on.

You, the user, can employ the return stack as as kind of "extra hand" to hold values temporarily while you perform operations on the
parameter stack.

The return stack is a last-in first-out structure, just like the parameter stack, so it can hold many values. But here's the catch: whatever
you put on the return stack you must remove again before you get to the end of the definition (the semicolon), because at that point the
Forth system will expect to find a pointer there. You cannot use the return stack to pass parameters from one word to another.

The following table lists the words associated with the return stack. Remember, the stack notation refers to the parameter stack.

>R (n --) Takes a value off the parameter stack and pushes it onto the return stack.

R> (-- n) Takes a value off the return stack and pushes it onto the parameter stack.

I (-- n) Copies the top of the return stack without affecting it.

R@ (-- n) Copies the top of the return stack without affecting it.

J (-- n) Copies the third item of the return stack without affecting it.

The words >R and R> transfer a value to and from the return stack, respectively. Say we want the following stack effect:

 (2 3 1 -- 3 2 1)

this is the phrase that will do it:

 >R SWAP R>

Each >R and its corresponding R> must be used together in the same definition.

http://www.amresearch.com/starting_forth/sf5/sf5.html (2 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

The other three words--I or R@ and J--only copy values from the return stack without removing them. Thus the phrase:

 >R SWAP R@

would produce the same result as far as it goes, but unless you clean up your trash before the next semicolon you will crash the system.

To see how >R, R>, R@, and I might be used, imagine you are so unlucky as to need to solve the equation:

 ax2 + bx + c

with all four values on the stack in the following order:

 (a b c x --)

(remember to factor out first).

Operator parameter stack return stack

 a b c x

>R a b c x

SWAP ROT c b a x

R@ c b a x x

* c b ax x

+ c ax+b x

R> * c x(ax+b)

+ x(ax+b)+c

Go ahead and try it. Load the following definition:

 : QUADRATIC (a b c x -- n)
 >R SWAP ROT R@ * + R> * + ;

Now test it:

 2 7 9 3 QUADRATIC 48 ok

An Introduction to Floating-Point Arithmetic

First, what does floating point mean? Take a pocket calculator, for example. Here's what the display looks like after each step:

You enter:
Display
reads:

1 . 5 0 x 1.5

2 . 2 3 2.23

= 3.345

The decimal point "floats" across the display as necessary. This is called a "floating point display."

"Floating point representation" is a way to store numbers in computer memory using a form of scientific notation. In scientific notation,
twelve million is written:

 12 x 106

since ten to the sixth power equals one million. In a computer twelve million is stored as two numbers: 12 and 6, where it is understood

http://www.amresearch.com/starting_forth/sf5/sf5.html (3 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

that 6 is the power of ten to be multiplied by 12, while 3.345 could be stored as 3345 and -3.

The idea of floating-point representation is that the computer can represent an enormous range of numbers, from atomic to astronomic,
with two relatively small numbers.

What is fixed-point representation? It is simply the method of storing numbers in memory without storing the positions of each
number's decimal point. For example, in working with dollars and cents, all values can be stored in cents. The program, rather than each
individual number, can remember the location of the decimal point.

For example, let's compare fixed-point and floating-point representations of dollars-and-cents values.

Real world
value:

Fixed-point
representation:

Floating-point
representation:

1.23 123 123(-2)

10.98 1098 1098(-2)

100.00 10000 1(2)

58.60 5860 586(-1)

As you can see , with fixed-point all the values must conform to the same "scale." The decimal points must be properly "aligned" (in
this case two places in from the right) even though they are not actually represented. With fixed-point, the computer treats all the
numbers as though they were integers. If the program needs to print out an answer, however, it simply inserts the decimal point two
places in from the right before it sends the number to the terminal or to the printer.

Why Fixed-Point is Useful

A Forth programmer is most interested in maximizing the efficiency of the machine. That means he or she wants to make the program
run as fast as possible and require as little computer memory as possible. Unfortunately, not all processors or controllers offer hardware
floating-point support. Therefore, in some environments, programs that use floating-point features are redirected through an emulation
library. Emulation code can be up to three times slower than the equivalent fixed-point calculation. Of course, this difference is only
really noticeable in programs which have to do a lot of calculations before sending results to a terminal or taking some action. The catch
is that code from an emulation library is also many times larger than its fixed-point counterpart, which is quite uneconomical for small
embedded controllers and such.

You should note carefully that when a processor supports hardware floating-point, it is almost always much faster and more compact
than the fixed-point equivalent. The speed difference can be between 3 and 15 times.

Everything you can do with floating-point, you can do with fixed-point too, as we'll show in the following. But there is one thing you
should minimize as much as possible, and that is switching back and forth between fixed and floating-point formats. Format conversion
and additional scaling steps cost as much or even more time than doing the calculations themselves.

Forth helps programmers use fixed-point by supplying them with a unique set of high-level commands called "scaling operators." We'll
introduce the first of these commands in the next section. (The final example in Chap. 12 illustrates the use of scaling techniques.)

Star-slash the Scalar

Here's a math operator that is as useful as it is unusual: */.

*/ (n1 n2 n3 -- n-result)
Multiplies, then divides (n1*n2/n3). Uses a double-length
intermediate result.

As its name implies, */ performs multiplication, then division. For example, let's say that the stack contains these three numbers:

 (225 32 100 --)

*/ will first multiply 225 by 32, then divide the result by 100.

http://www.amresearch.com/starting_forth/sf5/sf5.html (4 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

This operator is particularly useful as an integer-arithmetic solution to problems such as percentage calculations.

Star and Slash:
Practise, practise ...

For example, you could define the word % like this:

 : % 100 */ ;

so that by entering the number 225 and then the phrase:

 32 %

you'd end up with 32% of 225 (that is, 72) on the stack.

The method of first multiplying two integers, then dividing by 100 is identical
to the approach most people take in solving such problems om paper:

 225
 0.32 x
 4.50
 67.5
 72.00

*/ is not * and a / thrown together, though. It uses a "double-length intermediate result." What does that mean, you ask?

Say you want to compute 34% of 912,345,678. Remember that
single-precision operators, like * and /, only work with arguments
and results within the range of a single-length number. If you were to
enter the phrase:

 912345678 34 * 100 /

you'd get an incorrect result, because the "intermediate result" (in
this case, the result of the multiplication), exceeds 2147483647, as
shown in the left column in this pictorial simulation.

But */ uses a double-length intermediate result, so that its range will
be large enough to hold the result of any two single-length numbers
multiplied together. The phrase:

 912345678 34 100 */

returns the correct answer because the end result falls within the range of single-length numbers.

The previous example brings up another question: how to round off.

Let's assume that this is the problem:

If 32% of the students eating at the school cafetaria usually buy bananas, how many bananas should be on hand for a
crowd of 225? Naturally, we are only interested in whole bananas, so we'd like to round off any decimal remainder.

As our definition now stands, any value to the right of the decimal is simply dropped. In other words, the result is "truncated."

32% of: Result:

225 = 72.00 72 -- exactly correct

226 = 72.32 72 -- correct, rounded down (truncated)

227 = 72.64 72 -- truncated, not rounded

There is a way, however, with any decimal value of .5 or higher, to round upwards to the next whole banana. We could define the word
R%, for "rounded-percent," like this:

http://www.amresearch.com/starting_forth/sf5/sf5.html (5 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

 : R% 10 */ 5 + 10 / ;

so that the phrase:

 227 32 R% .

will give you 73, which is correctly rounded up.

Notice that we first divide by 10 rather than by 100. This gives us an extra decimal place to work with, to which we can add five:

Operation
Stack
Contents

 227 32 10

*/ 726

5 + 731

10 / 73

The final division by ten sets the value to its rightful decimal position. Try it and see.

A disadvantage to this method of rounding is that you lose one decimal place of range in the final result; that is, it can only go as high
as 214,748,364 rather than 2,147,483,647. But if that's a problem, you can always use double-length numbers, which we'll introduce
later, and still be able to round.

Some Perspective on Scaling

Let's back up for a minute. Take the simple problem of computing two-thirds of 171. Basically, there are two ways to go about it.

1. We could compute the value of the fraction 2/3 by dividing 2 by 3 to obtain the repeating decimal .6666666, etc. Then we could
multiply this value by 171. The result would be 113.9999999, etc., which is not quite right but which could be rounded up to
114.

2. We could multiply 171 by 2 to get 342. Then we could divide this by 3 to get 114.

Notice that the second way is simpler and more accurate.

Most computer languages support the first way. "You can't have a fraction like two-thirds hanging around inside a computer," it is
believed, "you must express it as .6666666, etc."

Forth supports the second way. */ lets you have a fraction like two-thirds, as in:

 171 2 3 */

Now that we have a little perspective, let's take a slightly more complicated example:

We want to distribute $150 in proportion to two values:

 7,105 ?
 5,145 ?
 12,250 150

Again, we could solve the problem this way:

 (7,105 / 12,250) x 150

http://www.amresearch.com/starting_forth/sf5/sf5.html (6 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

and

 (5,145 / 12,250) x 150

but for greater accuracy we should say:

 (7,105 x 150) / 12,250

and

 (5,145 x 150) / 12,250

which in Forth is written:

 7105 150 12250 */ . 87 ok

and

 5145 150 12250 */ . 63 ok

It can be said that the values 87 and 63 are "scaled" to 7105 and 5145. Calculating percentages, as we did earlier, is also a form of
scaling. For this reason, */ is called a "scaling operator."

Another scaling operator in Forth is */MOD:

*/MOD (n1 n2 n3 -- n-rem n-result)
Multiplies, then divides (n1*n2/n3). Returns the
remainder and the quotient. Uses a double-length
intermediate result.

We'll let you dream up a good example for */MOD yourself.

Using Rational Approximations

So far we've only used scaling operations to work on rational numbers. They can also be used on rational approximations of
irrational constants, such as π or the √2. For example, the real value of π is:

 3.14159265358979, etc.

but to stay within the bounds of single-length arithmetic, we could write the phrase:

 31416 10000 */

and get a pretty good approximation.

Now we can write a definition to compute the area of a circle, given its radius. We'll translate the formula:

 πr2

into Forth. The value of the radius will be on the stack, so we DUP it and multiply it by itself, then star-slash the result:

 : PI DUP * 31416 10000 */ ;

Try it with a circle whose radius is 10 inches:

 10 PI . 314 ok

http://www.amresearch.com/starting_forth/sf5/sf5.html (7 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

But for even more accuracy, we might wonder if there is a pair of integers beside 3146 and 10000 that is a closer approximation to π.
Surprisingly, there is. The fraction:

 355 113 */

is accurate to more than six places beyond the decimal, as opposed to less than four places with 31416.

Our new and improved definition, then, is:

 : PI DUP * 355 113 */ ;

It turns out that you can approximate nearly any constant by many different pairs of integers, all numbers less than 32768, with an error
less than 10-8.

Handy Table of Rational Approximations to Various Constants

Number Approximation Error

π = 3.141 ... 355 / 113 8.5 x 10-8

π = 3.141 ... 1068966896 / 340262731 1.0 x 10-20

√2 = 1.414 ... 19601 / 13860 1.5 x 10-9

3√2 = 1.732 ... 18817 / 10864 1.1 x 10-9

e = 2.718 ... 28667 / 10564 5.5 x 10-9

√10 = 3.162 ... 22936 / 7253 5.7 x 10-9

12√2 = 1.059 ... 26797 / 25293 1.0 x 10-9

log(2) / 1.6384 = 0.183 ... 2040 / 11103 1.1 x 10-8

ln(2) / 16.384 = 0.042 ... 485 / 11464 1.0 x 10-7

Here's a list of the Forth words we've covered in this chapter:

1+ (n -- n+1) Adds one.

1- (n -- n-1) Subtracts one.

2+ (n -- n+1) Adds two.

2- (n -- n-2) Subtracts two.

2* (n -- n*2) Multiplies by two (arithmetic left shift).

2/ (n -- n/2) Divides by two (arithmetic right shift).

ABS (n -- |n|) Returns the absolute value.

NEGATE (n -- -n) Changes the sign.

MIN (n1 n2 -- n-min) Returns the minimum.

MAX (n1 n2 -- n-max) Returns the maximum.

>R (n --) Takes a value off the parameter stack and pushes it onto the return stack.

R> (-- n) Takes a value off the return stack and pushes it onto the parameter stack.

I (-- n) Copies the top of the return stack without affecting it.

R@ (-- n) Copies the top of the return stack without affecting it.

J (-- n) Copies the third item of the return stack without affecting it.

*/ (n1 n2 n3 -- n-result) Multiplies, then divides (n1*n2/n3). Uses a double-length intermediate result.

*/MOD (n1 n2 n3 -- n-rem n-result)
Multiplies, then divides (n1*n2/n3). Returns the remainder and the quotient. Uses a double-
length intermediate result.

Review of Terms

http://www.amresearch.com/starting_forth/sf5/sf5.html (8 sur 10) [05/03/2005 04:54:19]

Leo Brodie's Starting Forth - Chapter 5

Double-length intermediate result
a double-length value which is created temporarily by a two-part operator, such as */, so that the
"intermediate result" (the result of the first operation) is allowed to exceed the range of a single-
length number, even when the initial arguments and the final result are not.

Fixed-point arithmetic
arithmetic which deals with numbers which do not themselves indicate the location of decimal
points. Instead, for any group of numbers, the program assumes the location of the decimal point or
keeps the decimal location for all such numbers as a separate number.

Floating-point arithmetic
arithmetic which deals with numbers which themselves indicate the location of their decimal points.
The program must be able to interpret the true value of each individual number before any
arithmetic can be performed.

Parameter stack
in Forth, the region of memory which serves as common ground between various operations to pass
arguments (numbers, flags, or whatever) from one operation to another.

Return stack
in Forth, a region of memory distinct from the parameter stack which the Forth system uses to hold
"return addresses" (to be discussed in Chap. 9), among other things. The user may keep values on
the return stack temporarily, under certain conditions.

Scaling
the process of multiplying (or dividing) a number by a ratio. Also refers to the process of
multiplying (or dividing) a number by a power of ten so that all values in a set of data may be
represented as integers with the decimal points assumed to be in the same place for all values.

Problems -- Chapter 5

1. Translate the following algebraic expression into a Forth definition:

 -a b
 c

given (a b c --) [answer]
2. Given these four numbers on the stack:

 (6 70 123 45 --)

write an expression that prints the largest value. [answer]
3. In "calculator style," convert the following temperatures, using these formulas:

oC = (oF - 32) / 1.8
oF = (oC x 1.8) + 32
oK = oC + 273

(For now, express all arguments and results in whole degrees.)
1. 0o F in Centigrade
2. 212o F in Centigrade
3. -32o F in Centigrade
4. 16o C in Fahrenheit
5. 233o K in Centigrade

[answer]
4. Now define words to perform the conversions in Prob. 3. Use the following names:

 F>C F>K C>F C>K K>F K>C

http://www.amresearch.com/starting_forth/sf5/sf5.html (9 sur 10) [05/03/2005 04:54:19]

http://home.iae.nl/users/mhx/sf5/5-1.gfs
http://home.iae.nl/users/mhx/sf5/5-2.gfs
http://home.iae.nl/users/mhx/sf5/5-3.gfs

Leo Brodie's Starting Forth - Chapter 5

Test them with the above values. [answer]

http://www.amresearch.com/starting_forth/sf5/sf5.html (10 sur 10) [05/03/2005 04:54:19]

http://home.iae.nl/users/mhx/sf5/5-4.gfs
http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 6

6 Throw it for a Loop
In Chap. 4 we learned to program the computer to make "decisions" by branching to different parts of a definition
depending on the outcome of certain tests. Conditional branching is one of the things that make computers as useful as they
are.

In this chapter, we'll see how to write definitions in which execution can conditionally branch back to an earlier part of the
same definition, so that some segment will repeat again and again. This type of control construct is called a "loop." The
ability to perform loops is probably the most significant thing that makes computers as powerful as they are. If we can
program the computer to make out one payroll check, we can program it to make out a thousand of them.

For now we'll write loops that do simple things like printing numbers at your terminal. In later chapters, we'll learn to do
much more with them.

Definite Loops -- DO...LOOP

One type of loop structure is called a "definite loop." You, the programmer, specify the number of times the loop will loop.
In Forth, you do this by specifying a beginning number and an ending number (in reverse order) before the word DO. Then
you put the words which you want to have repeated between the words DO and LOOP. For example

 : TEST 10 0 DO CR ." Hello " LOOP ;

will print a carriage return and "Hello" ten times, because zero from ten is ten.

 TEST
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello
 Hello ok

Like an IF...THEN statement, which also involves branching, a DO...LOOP statement must be contained within a (single)
definition.

The ten is called the "limit" and the zero is called the "index."

 FORMULA:
 limit index DO ... LOOP

Here is what happens inside a DO...LOOP:

First DO puts the index and the limit on the loop control stack.

http://www.amresearch.com/starting_forth/sf6/sf6.html (1 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

Then execution proceeds
to the words inside the loop,

up till the word
LOOP.

If the index is less than the limit, LOOP reroutes execution back to DO, and adds one to the index.

Eventually the index reaches ten, and LOOP lets execution move on to the next word in the definition.

Remember that the Forth word I copies the top of the loop control stack onto the parameter stack. You can use I to get hold
of the current value of the index each time around. Consider the definition

http://www.amresearch.com/starting_forth/sf6/sf6.html (2 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

 : DECADE 10 0 DO I . LOOP ;

which executes like this:

 DECADE 0 1 2 3 4 5 6 7 8 9 ok

Of course, you could pick any range of numbers (within the range of -2147483648 to +2147483647):

 : SAMPLE -243 -250 DO I . LOOP ;
 SAMPLE -250 -249 -248 -247 -246 -245 -244 ok

Notice that even negative numbers increase by one each time. The limit is always higher than the index.

You can leave a number on the stack to serve as an argument to something inside a DO loop. For instance,

 : MULTIPLICATIONS CR 11 1 DO DUP I * . LOOP DROP ;

will produce the following results:

 7 MULTIPLICATIONS
 7 14 21 28 35 42 49 56 63 70 ok

Here we're simply multiplying the current value of the index by seven each time around. Notice that we have to DUP the
seven inside the loop so that a copy will be available each time and that we have to DROP it after we come out of the loop.

A compound interest problem gives us the opportunity to demonstrate some trickier stack manipulations inside a DO loop.

Given a starting balance, say $1000, and an interest rate, say 6%, let's write a definition to compute and print a table like
this:

 1000 6 COMPOUND
 YEAR 1 BALANCE 1060
 YEAR 2 BALANCE 1124
 YEAR 3 BALANCE 1191
 etc.

for twenty years.

First we'll load R%, our previously-defined word from Chap. 5, then we'll define

 : COMPOUND (amt int --)
 CR SWAP 21 1 DO ." YEAR " I . 3 SPACES
 2DUP R% + DUP ." BALANCE " . CR
 LOOP 2DROP ;

Each time through the loop, we do a 2DUP so that we always maintain a running balance and an unchanged interest rate for
the next go-round. When we're finally done, we 2DROP them.

Getting IF fy

The index can also serve as a condition for an IF statement. In this way you can make something special happen on certain
passes through the loop but not on others. Here's a simple example:

http://www.amresearch.com/starting_forth/sf6/sf6.html (3 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

 : RECTANGLE 256 0 DO I 16 MOD 0= IF CR THEN
 ." *"
 LOOP ;

RECTANGLE will print 256 stars, and at every sixteenth star it will also perform a carriage return at your terminal. The
result should look like this:

And here's an example from the world of nursery rhymes. We'll let you figure this one out.

 : POEM CR 11 1 DO I . ." Little "
 I 3 MOD 0= IF ." indians " CR THEN
 LOOP
 ." indian boys. " ;

Nested Loops

In the last section we defined a word called MULTIPLICATIONS, which contains a DO...LOOP. If we wanted to, we could
put MULTIPLICATIONS inside another DO...LOOP, like this:

 : TABLE CR 11 1 DO I MULTIPLICATIONS LOOP ;

Now we'll get a multiplication table that looks like this:

 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 etc.
 10 20 30 40 50 60 70 80 90 100

because the I in the outer loop supplies the argument for MULTIPLICATIONS.

You can also nest DO loops inside one another all in the same definition:

 : TABLE CR 11 1 DO
 11 1 DO I J * 5 U.R LOOP
 CR LOOP ;

http://www.amresearch.com/starting_forth/sf6/sf6.html (4 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

Notice this phrase in the inner loop:

 I J *

In Chap. 5 we mentioned that the word J copies the third item on the loop control stack
onto the parameter stack. It so happens that in this case the third item on the loop control
stack is the index of the outer loop.

Thus the phrase "I J *" multiplies the two indexes to create the value in the table.

Now what about this phrase?

 5 U.R

This is nothing more than a fancy . that is used to print numbers in table form so that they
line up vertically. The five represents the number of spaces we've decided each column in
the table should be. The output of the new table will look like this:

 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30 etc.

Each number takes five spaces, no matter how many digits it contains. (U.R stands for "unsigned number-print, right
justified." The term "unsigned," you may recall, means you cannot use it for negative numbers.)

+LOOP

If you want the index to go up by some number other than one each time around, you can use the word +LOOP instead of
LOOP. +LOOP expects on the stack the number by which you want the index to change. For example, in the definition

 : PENTAJUMPS 50 0 DO I . 5 +LOOP ;

the index will go up by five each time, with this result:

 PENTAJUMPS 0 5 10 15 20 25 30 35 40 45 ok

while in

 : FALLING -10 0 DO I . -1 +LOOP ;

the index will go down by one each time, with this result:

 FALLING 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 ok

The argument for +LOOP, which is called the "increment," can come from anywhere, but it must be put on the stack each
time around. Consider this experimental example:

 : INC-COUNT DO I . DUP +LOOP DROP ;

There is no increment inside the definition; instead, it will have to be on the stack when INC-COUNT is executed, along
with the limit and index. Watch this:

http://www.amresearch.com/starting_forth/sf6/sf6.html (5 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

Step up by one:

 1 5 0 INC-COUNT 0 1 2 3 4 ok

Step up by two:

 2 5 0 INC-COUNT 0 2 4 ok

Step down by three:

 -3 -10 10 INC-COUNT 10 7 4 1 -2 -5 -8 ok

Our next example demonstrates an increment that changes each time through the loop.

 : DOUBLING 32767 1 DO I . I +LOOP ;

Here the index itself is used as the increment (I +LOOP), so that starting with one, the index doubles each time, like this:

 DOUBLING
 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 ok

Notice that in this example we don't ever want the argument for
+LOOP to be zero, because if it were we'd never come out of the
loop. We would have created what is known as an "infinite loop."

DOing it -- Forth Style

There are a few things to remember before you go off and write some
DO loops of your own.

First, keep this simple guide in mind:

Reasons for termination

Execution makes its exit from a loop when, in going up, the index has reached or passed the limit.

http://www.amresearch.com/starting_forth/sf6/sf6.html (6 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

Or, when in going down, the index has passed the limit--not when it has merely reached it.

But a DO loop always executes at least once:

 : TEST 100 10 DO I . -1 +LOOP ;
 TEST 10 ok

Second, remember that the words DO and LOOP are branching commands and that therefore they can only be executed
inside a definition. This means that you cannot design/test your loop definitions in "calculator style" unless you simulate the
loop yourself.

Let's see how a fledgling Forth programmer might go about design/testing the definition of COMPOUND (from the first
section of this chapter). Before adding the ." messages, the programmer might begin by jotting down this version on a piece
of paper:

 : COMPOUND (amt int --)
 SWAP 21 1 DO I . 2DUP R% + DUP . CR LOOP 2DROP ;

The programmer migh test this version at the terminal, using . or .S to check the result of each step. The "conversation"
might look like this:

http://www.amresearch.com/starting_forth/sf6/sf6.html (7 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

A Handy Hint
How to Clear the Stack

Sometimes a beginner will unwittingly write a loop which leaves a whole lot of numbers on the stack. For example

 : FIVES 100 0 DO I 5 . LOOP ;

instead of

 : FIVES 100 0 DO I 5 * . LOOP ;

If you see this happen to anyone (surely it will never happen to you!) and if you see the beginner typing in an endless
succession of dots to clear the stack, recommend typing in

 XX

XX is not a Forth word, so the text interpreter will execute the word ABORT", which among other things clears all stacks.
The beginner will be endlessly grateful.

Indefinite Loops

While DO loops are called definite loops, Forth also supports "indefinite" loops. This type of loop will repeat indefinitely or
until some event occurs. A standard form of indefinite loop is

 BEGIN ... UNTIL

The BEGIN...UNTIL loop repeats until a condition is "true."

The useage is

 BEGIN xxx f UNTIL

where "xxx" stands for the words that you want to be repeated, and "f" stands for a flag. As long as the flag is zero (false),

http://www.amresearch.com/starting_forth/sf6/sf6.html (8 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

the loop will continue to loop, but when the flag becomes non-zero (true), the loop will end.

An example of a definition that uses a BEGIN...UNTIL statement is one we mentioned earlier, in our washing machine
example:

 : TILL-FULL BEGIN ?FULL UNTIL ;

which we used in the higher-level definition

 : FILL FAUCETS OPEN TILL-FULL FAUCETS CLOSE ;

?FULL will be defined to electronically check a switch in the washtub that indicates when the water reaches the correct
level. It will return zero if the switch is not activated and a one if it is. TILL-FULL does nothing but repeatedly make this
test over and over (millions of times per second) until the switch is finally activated, at which time execution will come out
of the loop. Then the ; in TILL-FULL will return the flow of execution to the remaining words in FILL, and the water
faucets will be turned off.

Sometimes a programmer will deliberately want to create an infinite loop. In Forth, the best way is with the form

 : BEGIN xxx 0 UNTIL

The zero supplies a "false" flag to the word UNTIL, so the loop will repeat eternally.

Beginners usually want to avoid infinite loops, because executing one means that they lose control of the computer (in the
sense that only the words inside the loop are being executed). But infinite loops do have their uses. For instance, the text
interpreter is part of an infinite loop called QUIT, which waits for input, interprets it, executes it, prints "ok," then waits for
input once again. In most microprocessor-controlled machines, the highest-level definition contains an infinite loop that
defines the machine's behavior.

Another form of indefinite loop is used in this format:

 BEGIN xx f WHILE yyy REPEAT

Here the test occurs halfway through the loop rather than at the end. As long as the test is true, the flow of execution
continues with the rest of the loop, then returns to the beginning again. If the test is false, the loop ends.

http://www.amresearch.com/starting_forth/sf6/sf6.html (9 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

Notice that the effect of the test is opposite that in the BEGIN...UNTIL construction. Here the loop repeats while something
is true (rather than until it's true).

The indefinite loop structures lend themselves best to cases in which you're waiting for some external event to happen, such
as the closing of a switch or thermostat, or the setting of a flag by another part of an application that is running
simultaneously. So for now, instead of giving examples, we just want you to remember that the indefinite loop structures
exist.

The Indefinitely Definite Loop

There is a way to write a definite loop so that it stops short of the prescribed limit if a truth condition changes state, by using
the word LEAVE. LEAVE causes the loop to end immediately.

Watch how we rewrite our earlier definition of COMPOUND. Instead of just letting the loop run twenty times, let's get it to
quit after twenty times or as soon as our money has doubled, whichever occurs first.

We'll simply add this phrase:

 2000 > IF LEAVE THEN

like this:

 : DOUBLED
 6 1000 21 1 DO CR ." YEAR " I 2 U.R
 2DUP R% + DUP ." BALANCE " .
 DUP 2000 > IF CR CR ." more than doubled in "
 I . ." years " LEAVE
 THEN
 LOOP 2DROP ;

The result will look like this:

 DOUBLED
 YEAR 1 BALANCE 1060
 YEAR 2 BALANCE 1124

http://www.amresearch.com/starting_forth/sf6/sf6.html (10 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

 YEAR 3 BALANCE 1191
 YEAR 4 BALANCE 1262
 YEAR 5 BALANCE 1338
 YEAR 6 BALANCE 1418
 YEAR 7 BALANCE 1503
 YEAR 8 BALANCE 1593
 YEAR 9 BALANCE 1609
 YEAR 10 BALANCE 1790
 YEAR 11 BALANCE 1897
 YEAR 12 BALANCE 2011

 more than doubled in 12 years ok

One of the problems at the end of this chapter asks you to rework DOUBLED so that it expects the parameters of interest and
starting balance, and computes by itself the double balance that LEAVE will try to reach.

Two Handy Hints: PAGE and QUIT

To give a neater appearance to your loop outputs (such as tables and geometric shapes), you might want to clear the screen
first by using the word PAGE. You can execute PAGE interactively like this:

 PAGE RECTANGLE

which will clear the screen before printing the rectangle that we defined earlier in this chapter. Or you could put PAGE at
the beginning of the definition. like this:

 : RECTANGLE PAGE 256 0 DO I 16 MOD 0= IF CR THEN ." *" LOOP ;

If you don't want the "ok" to appear upon completion of execution, use the word QUIT. Again, you can use QUIT
interactively:

 RECTANGLE QUIT

or you can make QUIT the last word in the definition (just before the semicolon).

Here's a list of the Forth words we've covered in this chapter:

DO ... LOOP
DO: (limit index --)
LOOP: (--)

Sets up a finite loop, given the index range.

DO ... +LOOP
DO: (limit index --)
+LOOP: (--)

Like DO ... LOOP except adds the value of n (instead of always one) to
the index.

LEAVE (--) Terminate the loop immediately.

BEGIN ... UNTIL UNTIL: (f --) Sets up an indefinite loop which ends when f is true.

BEGIN xxx
WHILE yyy
REPEAT

WHILE: (f --)
Sets up an indefinite loop which always executes xxx and also yyy if f is true.
Ends when f is false.

U.R (u width --)
Prints the unsigned single-length number, right-justified within the field
width.

PAGE (--)
Clears the terminal screen and resets the terminal's cursor to the upper left-
hand corner.

QUIT (--) Terminates execution for the current task and returns control to the terminal.

http://www.amresearch.com/starting_forth/sf6/sf6.html (11 sur 14) [05/03/2005 04:54:47]

Leo Brodie's Starting Forth - Chapter 6

Review of Terms

definite loop
a loop structure in which the words contained within the loop repeat a definite number of times. In Forth,
this number depends on the starting and ending counts (index and limit) which are placed on the stack prior
to the execution of the word DO.

Infinite loop
a loop structure in which the words contained within the loop continue to repeat without any chance of an
external event stopping them, except for closing the Forth window or shutting down or resetting the
computer.

Indefinite loop
a loop structure in which the words contained within the loop continue to repeat until some truth condition
changes state (true-to-false or false-to-true). In Forth, the indefinite loops begin with the word BEGIN.

Problems -- Chapter 6

In Problems 1 trough 6, you will create several words which will print out patterns of stars (asterisks). These will involve
the use of DO loops and BEGIN...UNTIL loops.

1. First create a word named STARS which will print out n stars on the same line, given n on the stack:

 10 STARS ********** ok

[answer]
2. Next define BOX which prints out a rectangle of stars, given the width and height (number of lines), using the stack

order (width height --).

 10 3 BOX

 ********** ok

[answer]
3. Now create a word named \STARS which will print a skewed array of stars (a rhomboid), given the height on the

stack. Use a DO loop and, for simplicity, make the width a constant ten stars.

 3 \STARS

 ********** ok

[answer]
4. Now create a word which slants the stars the other direction: call it /STARS. It should take the height as a stack

input and use a constant ten width. Use a DO loop. [answer]
5. Now redefine this last word, using a BEGIN...UNTIL loop. [answer]
6. Write a definition called DIAMONDS which will print out the given number of diamond shapes, as shown in this

example.

 2 DIAMONDS *

http://www.amresearch.com/starting_forth/sf6/sf6.html (12 sur 14) [05/03/2005 04:54:47]

http://home.iae.nl/users/mhx/sf6/6-1.gfs
http://home.iae.nl/users/mhx/sf6/6-2.gfs
http://home.iae.nl/users/mhx/sf6/6-3.gfs
http://home.iae.nl/users/mhx/sf6/6-4.gfs
http://home.iae.nl/users/mhx/sf6/6-5.gfs

Leo Brodie's Starting Forth - Chapter 6

 *
 *

 *

[answer]
7. In our discussion of LEAVE we gave an example which computed 6% compound interest on a starting balance of

$1000 for 20 years or until the balance had doubled, whichever came first. Rewrite this definition so that it will
expect a starting balance and interest rate on the stack and will LEAVE when this starting balance has doubled.
[answer]

8. Define a word called ** that will compute exponential values, like this:

 7 2 ** . 49 ok

(seven squared)

 2 4 ** . 16 ok

(two to the fourth power)

http://www.amresearch.com/starting_forth/sf6/sf6.html (13 sur 14) [05/03/2005 04:54:47]

http://home.iae.nl/users/mhx/sf6/6-6.gfs
http://home.iae.nl/users/mhx/sf6/6-7.gfs

Leo Brodie's Starting Forth - Chapter 6

For simplicity, assume positive exponents only (but make sure ** works correctly when the exponent is one--the
result should be the number itself). [answer]

http://www.amresearch.com/starting_forth/sf6/sf6.html (14 sur 14) [05/03/2005 04:54:47]

http://home.iae.nl/users/mhx/sf6/6-8.gfs
http://validator.w3.org/

http://www.amresearch.com/starting_forth/sf7/sf7.html

7 A Number of Kinds of Numbers
So far we've only talked about signed single-length numbers. In this chapter we'll introduce unsigned numbers and
double-length numbers, as well as a whole passel of new operators to go along with them.

This chapter is divided in two sections:

For beginners--this section explains how a computer looks at numbers and exactly what is meant by the terms
signed or unsigned and by single-length or double-length.

For everyone--this section continues our discussion of Forth for beginners and experts alike, and explains how Forth
handles signed and unsigned, single- and double-length numbers.

Section 1 -- For Beginners

Signed versus Unsigned Numbers

All digital computers store numbers in binary form. In Forth, the stack is (normally) thirty-two bits wide (a "bit" is a "binary digit").
Below is a view of thirty-two bits, showing the value of each bit:

If every bit were to contain a 1, the total would be 4294967295. Thus in 32 bits we can express any value between 0 and 4294967295.
Because this kind of number does not let us express negative values, we call it an "unsigned number." We have been indicating
unsigned numbers with the letter "u" in our tables and stack notations.

But what about negative numbers? In order to be able to express a positive or negative number, we need to sacrifice one bit that will
essentially indicate sign. This bit is the one at the far left, the "high-order bit." In 31 bits we can express a number as high as
2147483647. When the sign bit contains 1, then we can go an equal distance back into the negative numbers. Thus within 32 bits we
can represent any number from -2147483648 to +2147483647. This should look familiar to you as the range of a single-length
number, which we have been indicating with the letter "n."

Before we leave you with any misconceptions, we'd better clarify the way negative numbers are represented. You might think that it's
a simple matter of setting the sign bit to indicate whether a number is positive or negative, but it doesn't work that way.

To explain how negative numbers are represented, let's return to decimal notation and examine a counter such as that found on many
WWW internet pages.

Let's say the counter has three digits, not five. As more people visit the page, the counter-wheels turn and the number increases.
Starting once again with the counter at 0, now imagine you badly regret having visited the page and could "un-visit" it by rolling the
counter wheels backward. The first number you see is 999, which is, in a sense, the same as -1. The next number will be 998, which is
the same as -2, and so on.

The representation of signed numbers in a computer is similar.

Starting with the number

 0000,0000,0000,0000,0000,0000,0000,0000

http://www.amresearch.com/starting_forth/sf7/sf7.html (1 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

and going backwards one number, we get

 1111,1111,1111,1111,1111,1111,1111,1111 (thirty-two ones)

which stands for 4294967295 in unsigned notation as well as for -1 in signed notation. The number

 1111,1111,1111,1111,1111,1111,1111,1110

which stands for 4294967294 in unsigned notation, represents -2 in signed notation.

Here's a chart that shows how a binary number on the stack can be used either as an unsigned number or as a signed number:

This bizarre-seeming method for representing negative values makes it possible for the computer to use the same procedures for
subtraction as for addition.

To show how this works, let's take a very simple problem:

 2
 -1

Subtracting one from two is the same as adding two plus negative one. In single-length binary notation, the two looks like this:

 0000,0000,0000,0000,0000,0000,0000,0010

while negative-one looks like this:

 1111,1111,1111,1111,1111,1111,1111,1111

The computer adds them up the same way we would on paper; that is when the total of any column exceeds one, it carries a one into
the next column. The result looks like this:

 0000,0000,0000,0000,0000,0000,0000,0010
 +1111,1111,1111,1111,1111,1111,1111,1111
 10000,0000,0000,0000,0000,0000,0000,0001

As you can see, the computer had to carry a one into every column all the way across, and ended up with a one in the thirty-third
place. But since the stack is only thirty-two bits wide, the result is simply

 0000,0000,0000,0000,0000,0000,0000,0001

which is the correct answer, one.

http://www.amresearch.com/starting_forth/sf7/sf7.html (2 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

We needn't explain how the computer converts a positive number to negative, but we will tell you that the process is called "two's
complementing."

Arithmetic Shift

While we're on the subject of how a computer performs certain mathematical operations, we'll explain what is meant by the
mysterious phrases back in Chap. 5: "arithmetic left shift" and "arithmetic right shift."

A Forth Instant Replay

2* (n -- n*2) Multiplies by two (arithmetic left shift)

2/ (n -- n/2) Divides by two (arithmetic right shift)

LSHIFT (n u -- n*2^u) Logical left shift over u positions

RSHIFT (n -- n/2^-u) Logical right shift over u positions

To illustrate, let's pick a number, say six, and write it in binary form:

 0000,0000,0000,0000,0000,0000,0000,0110

(4+2). Now let's shift every digit one place to the left, and put a zero in the vacant place in the one's column.

 0000,0000,0000,0000,0000,0000,0000,1100

This is the binary representation of twelve (8+4), which is exactly double the original number. This works in all cases, and it also
works in reverse. If you shift every digit one place to the right and fill the vacant digit with a zero, the result will always be half of the
original value.

In arithmetic shift, the sign bit does not get shifted. This means that a positive number will stay positive and a negative number will
stay negative when you divide or multiply it by two.

When the high-order bit shifts with all the other bits, the term is "logical shift." In Forth you can do a logical shift of up to 32 places
with the words LSHIFT and RSHIFT.

The important thing for you to know is that most computers can shift digits much more quicky than they can go through all the
folderol of normal division or multiplication. When speed is critical, it's much better to say

 2*

than

 2 *

and it may even be better to say

 2* 2* 2*

than

 8 *

depending on your particular model of computer, but this topic is getting too technical for right now.

An Introduction to Double-length Numbers

http://www.amresearch.com/starting_forth/sf7/sf7.html (3 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

A double-length number is just what you probably expected it would be: a number that is represented in sixty-four bits instead of
thirty-two. Signed double-length numbers have a range of +/-18,446,744,073,709,551,615.

In Forth, a double-length number takes the place of two single-length numbers on the stack. Operators like 2DUP are useful either for
double-length numbers or for pairs of single-length numbers.

One more thing we should explain: to the non-Forth-speaking computer world, the term "double word" means a 32-bit value, or four
bytes. But in Forth, "word" means a defined command. So in order to avoid confusion, Forth programmers refer to a 32-bit value as a
"cell." A double-length number requires two cells.

Other Number Bases

As you get more involved in programming, you'll need to employ other number bases besides decimal and binary, particularly
hexadecimal (base 16) and octal (base 8). Since we'll be talking about these two number bases later on in this chapter, we think you
might like an introduction now.

Computer people began using hexadecimal and octal numbers for one main reason: computers think in binary and human beings have
a hard time reading long binary numbers. For people, it's much easier to convert binary to hexadecimal than binary to decimal,
because sixteen is an even power of two, while ten is not. The same is true with octal. So programmers usually use hex or octal to
express the binary numbers that the computer uses for things like addresses and machine codes. Hexadecimal (or simply "hex") looks
strange at first since it uses the letters A through F.

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Let's take a single-length binary number:

 00000000000000000111101110100001

To convert this number to hexadecimal, we first subdivide it into eight units of four bits each:

 | 0000 | 0000 | 0000 | 0000 | 0111 | 1011 | 1010 | 0001 |

then convert each 4-bit unit to its hex equivalent:

 |0|0|0|0|7|B|A|1|

or simply 7BA1.

http://www.amresearch.com/starting_forth/sf7/sf7.html (4 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

Octal numbers use only the numerals 0 through 7. Because nowadays most computers use hexadecimal representation, we'll skip an
octal conversion example.

We'll have more on conversions in the section titled "Number Conversions" later in this chapter.

The ASCII Character Set

If the computer uses binary notation to store numbers, how does it store characters and other symbols? Binary, again, but in a special
code that was adopted as an industry standard many years ago. The code is called the American Standard Code for Information
Interchange, usually abbreviated ASCII.

Table 7-1 shows each ASCII character in the system, its ISO 646-1983, ISO 7-bit coded characterset for information interchange,
International Reference Version equivalent (IRV), and its hexadecimal form.

The characters in the first column (ASCII codes 0-1F hex) are called "control characters" because they indicate that the terminal or
computer is supposed to do something like ring its bell, backspace, start a new line, etc. The remaining characters are called "printing
characters" because they produce visible characters including letters, the numerals zero through nine, all available symbols and even
the blank space (hex 20). The only exception is DEL (hex 7F) which is a signal to the computer to ignore the last character sent.

In Chap. 1 we introduced the word EMIT. EMIT takes an ASCII code on the stack and sends it to the terminal so that the terminal
will print it as a character. For example,

 65 EMIT A ok
 66 EMIT B ok

etc. (We're using the decimal, rather than the hex, equivalent because that's what your computer is most likely expecting right now.)

Why not test EMIT on every printing character, "automatically"?

 : PRINTABLES 127 32 DO I EMIT SPACE LOOP ;

PRINTABLES will emit every printable character in the ASCII set; that is, the characters from decimal 32 to decimal 126. (We're
using the ASCII codes as our DO loop index.)

 PRINTABLES ! " # $ % & ' () * + , - . / ... ok

Table 7.1 - Standard graphic characters & Equivalents

Hex ASCII Hex ASCII
Hex IRV

ASCII
Hex IRV

ASCII
Hex IRV

ASCII
Hex IRV

ASCII
Hex IRV

ASCII
Hex IRV

ASCII

00 NUL 10 DLE 20 30 0 0 40 @ @ 50 P P 60 ` ` 70 p p

01 SOH 11 DC1 21 ! ! 31 1 1 41 A A 51 Q Q 61 a a 71 q q

02 STX 12 DC2 22 " " 32 2 2 42 B B 52 R R 62 b b 72 r r

03 ETX 13 DC3 23 # # 33 3 3 43 C C 53 S S 63 c c 73 s s

04 EOT 14 DC4 24 - $ 34 4 4 44 D D 54 T T 64 d d 74 t t

05 ENQ 15 NAK 25 % % 35 5 5 45 E E 55 U U 65 e e 75 u u

06 ACK 16 SYN 26 & & 36 6 6 46 F F 56 V V 66 f f 76 v v

07 BEL 17 ETB 27 ' ' 37 7 7 47 G G 57 W W 67 g g 77 w w

08 BS 18 CAN 28 ((38 8 8 48 H H 58 X X 68 h h 78 x x

09 HT 19 EM 29)) 39 9 9 49 I I 59 Y Y 69 i i 79 y y

0A LF 1A SUB 2A * * 3A : : 4A J J 5A Z Z 6A j j 7A z z

http://www.amresearch.com/starting_forth/sf7/sf7.html (5 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

0B VT 1B ESC 2B + + 3B ; ; 4B K K 5B [[6B k k 7B { {

0C FF 1C FS 2C , , 3C < < 4C L L 5C \ \ 6C l l 7C | |

0D CR 1D GS 2D - - 3D = = 4D M M 5D]] 6D m m 7D } }

0E SM 1E RS 2E . . 3E > > 4E N N 5E ^ ^ 6E n n 7E ~ ~

0F SI 1F US 2F / / 3F ? ? 4F O O 5F 6F o o

Beginners may be interested in some of the control characters as well. For instance, try this:

 7 EMIT ok

You should have heard some sort of beep, which is the video terminal's version of the mechanical printer's "typewriter bell."

Other control characters that are good to know include the following:

name operation decimal equivalent

BS backspace 8

LF line feed 10

CR carriage return 13

Experiment with these control characters, and see what they do.

ASCII is designed so that each character can be represented by one byte. The tables in this book use the letter "c" to indicate a byte
value that is being used as a coded ASCII character.

Bit Logic

The words AND and OR (which we introduced in Chap. 4) use "bit logic"; that is, each bit is treated independently, and there are no
"carries" from one bit-place to the next. For example, let's see what happens when we AND these two binary numbers:

 0000,0000,0000,0000,0000,0000,1111,1111
 0000,0000,0000,0000,0110,0101,1010,0010 AND
 0000,0000,0000,0000,0000,0000,1010,0010

For any result-bit to be "1," the respective bits in both arguments must be "1." Notice in this example that the argument on top
contains all zeroes in the high-order bytes and all ones in the low-order byte. The effect on the second argument in this example is
that the low-order eight bits are kept but the high-order twenty-four bits are all set to zero. Here the first argument is being used as a
"mask," to mask out the high-order bytes of the second argument.

The word OR also uses bit logic. For example,

 1000,0100,0010,0001,1000,1001,0000,1001
 0110,0110,0110,0110,0000,0011,1100,1000 OR
 1110,0110,0110,0111,1000,1011,1100,1001

A "1" in either argument produces a "1" in the result. Again, each column is treated separately, with no carries.

By clever use of masks, we could even use a 32-bit value to hold 32 separate flags. For example, we could find out whether this bit

 1000,0100,0010,0001,1000,1001,0000,1001
 ^

http://www.amresearch.com/starting_forth/sf7/sf7.html (6 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

is "1" or "0" by masking out all other flags, like this:

 1000,0100,0010,0001,1000,1001,0000,1001
 0000,0000,0000,0000,1000,0000,0000,0000 AND
 0000,0000,0000,0000,1000,0000,0000,0000

Since the bit was "1," the result is "true." Had it been "0," the result would have been "0" or "false."

We could set the flag to "0" without affecting the other flags by using this technique:

 1000,0100,0010,0001,1000,1001,0000,1001
 1111,1111,1111,1111,0111,1111,1111,1111 AND
 1000,0100,0010,0001,0000,1001,0000,1001
 ^

We used a mask that contains all "1"s except for the bit we wanted to set to "0." We can set the same flag back to "1" by using this
technique:

 1000,0100,0010,0001,0000,1001,0000,1001
 0000,0000,0000,0000,1000,0000,0000,0000 OR
 1000,0100,0010,0001,1000,1001,0000,1001
 ^

Section 2 -- For Everybody

Signed and Unsigned Numbers

Back in Chap. 1 we introduced the word NUMBER. If the word FIND can't find an incoming string in the dictionary, it hands it over
to the word NUMBER. NUMBER then attempts to convert the string into a number expressed in binary form. If NUMBER succeeds,
it pushes the binary equivalent onto the stack.

This means that NUMBER does not check whether the number you've entered as a single-length number exceeds the proper range. If
you enter a giant number, NUMBER converts it but only saves the least significant thirty-two digits.

For Beginners
NUMBER does not do any range-checking. Because of this,
NUMBER can convert either signed or unsigned numbers.

For instance, if you enter any number between 2147483648 and 4294967295, NUMBER will convert it as an unsigned number. Any
value between -2147483648 and -1 will be stored as a two's-complement integer.

This is an important point: the stack can be used to hold either signed or unsigned numbers. Whether a binary value is interpreted as
signed or unsigned depends on the operators that you apply to it. You decide which form is better for a given situation, then stick to
your choice.

We've introduced the word ., which prints a value on the stack as a signed number:

 4294967295 . -1 ok

The word U. prints the binary representation as an unsigned number:

 4294967295 U. 4294967295 ok

http://www.amresearch.com/starting_forth/sf7/sf7.html (7 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

U.

(u --) Prints the unsigned single-length number, followed by a space.

In this book the letter "n" signifies signed single-length numbers, while the letter "u" signifies unsigned single-length numbers.
(We've already introduced U.R, which prints an unsigned single-length number right-justified within a given column width.)

Here is a table of additional words that use unsigned numbers:

UM*

(u1 u2 -- ud) Multiplies two single-length numbers. Returns a double-length result. All values are unsigned.

UM/MOD

(ud u1 -- u2 u3)

Divides a double-length by a single-length number. Returns a single-length quotient u2 and
remainder u3. All values are unsigned.

U<

(u1 u2 -- f) Leaves true if u1 < u2, where both are treated as single-length unsigned integers.

Number Bases

When you first start Forth, all number conversions use base ten (decimal), for both input and output.

You can easily change the base by executing one of the following commands:

HEX (--) Sets the base to sixteen.

OCTAL (--) Sets the base to eight (available on some systems).

DECIMAL (--) Returns the base to ten.

When you change the number base, its stays changed until you change it again. So be sure to declare DECIMAL as soon as you're
done with another number base.

These commands make it easy to do number conversions in "calculator style."

For example, to convert decimal 100 into hexadecimal, enter

 DECIMAL 100 HEX . 64 ok

To convert hex F into decimal (remember you are already in hex), enter

 0F DECIMAL . 15 ok

Make it a habit, starting right now, to precede each hexadecimal value with a zero, as in

 0A 0B 0F

http://www.amresearch.com/starting_forth/sf7/sf7.html (8 sur 20) [05/03/2005 04:55:13]

http://www.amresearch.com/starting_forth/sf7/sf7.html

This practice avoids mix-ups with possibly predefined words as DEADBEEF, BAD, DEC etc.

Beginners who want to see what numbers look like in binary notation may enter this definition:

 : BINARY 2 BASE ! ;

The new word BINARY will operate just like OCTAL or HEX but will change the number base to two. On systems which do not
have the word OCTAL, experimenters may define

 : OCTAL 8 BASE ! ;

Handy Hint

A definition of BINARY -- or Any-ARY

Double-length Numbers

Double-length numbers provide a range of +/-
18,446,744,073,709,551,615. ANS Forth systems support double-length numbers to some degree. The way to enter a double-length
number onto the stack (whether from the keyboard or from a file) is to punctuate it with one of these five punctuation marks:

 , . / - ;

For example, when you type

 200,000

NUMBER recognizes the comma as a signal that this value should be converted to double-length. NUMBER then pushes the value
onto the stack as two consecutive "cells" (cell is the Forth term for single-length), the high order cell on top.

The Forth word D. prints a double-length number without any punctuation.

D.

(d --) Prints the signed double-length number, followed by one space.

In this book, the letter "d" stands for a double-length signed integer.

For example, having entered a double-length number, if you were now to execute D., the computer would respond:

 D. 200000 ok

Notice that all of the following numbers are converted in exactly the same way:

http://www.amresearch.com/starting_forth/sf7/sf7.html (9 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

 12345. D. 12345 ok
 123.45 D. 12345 ok
 1-2345 D. 12345 ok
 1/23/45 D. 12345 ok
 1:23:45 D. 12345 ok

But this is not the same:

 -12345

because this value would be converted as a negative, single-length number. (This is the only case in which a hyphen is interpreted as
a minus sign and not as punctuation.)

In the next section we'll show you how to define your own equivalents to D. which will print whatever punctuation you want along
with the number.

Number Formatting -- Double-length Unsigned

 $200.00 12/31/80 372-8493 6:32:59 98.6

The above numbers represent the kinds of output you can create by defining your own "number-formatting words" in Forth. This
section will show you how.

The simplest number-formatting definition we could write would be

 : UD. <# #S #> TYPE ;

UD. will print an unsigned double-length number. The words <# and #> (respectively pronounced bracket-number and number-
bracket) signify the beginning and the end of the number-conversion process. In this definition, the entire conversion is being
performed by the single word #S (pronounced numbers). #S converts the value on the stack into ASCII characters. It will only
produce as many digits as are necessary to represent the number; it will not produce leading zeroes. But it always produces at least
one digit, which will be zero if the value was zero. For example:

 12,345 UD. 12345ok
 12. UD. 12ok
 0. UD. 0ok

The word TYPE prints the characters that represent the number at your terminal. Notice that there is no space between the number
and the "ok." To get a space, you would simply add the word SPACE, like this:

 : UD. <# #S #> TYPE SPACE ;

Now let's say we have a phone number on the stack, expressed as a double-length unsigned integer. For example, we may have typed
in:

 372-8493

(remember that the hyphen tells NUMBER to treat this as a double-length value). We want to define a word which will format this
value back as a phone number. Let's call it .PH# (for "print the phone number") and define it thus:

 : .PH# <# # # # # [CHAR] - HOLD #S #> TYPE SPACE ;

http://www.amresearch.com/starting_forth/sf7/sf7.html (10 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

Our definition of .PH# has everything that UD. has, and more. The Forth word #
(pronounced number) produces a single digit only. A number-formatting definition is
reversed from the order in which the number will be printed, so the phrase

 # # # #

produces the right-most four digits of the phone number.

Now it's time to insert the hyphen. Using [CHAR] we can get the code value of this ASCII
character on the stack. The Forth word HOLD takes this ASCII code and inserts it into the
formatted number character string.

We now have three digits left. We might use the phrase

 # # #

but it is easier to simply use the word #S, which will automatically convert the rest of the number for us.

If you are more familiar with ASCII codes represented in hexadecimal form, you can use this definition instead:

 HEX : .PH# <# # # # # 02D HOLD #S #> TYPE SPACE ;
 DECIMAL

Either way, the compiled definition will be exactly the same.

Now let's format an unsigned double-length number as a date, in the following form:

 6/15/03

Here is the definition:

 : .DATE <# # # [CHAR] / HOLD # # [CHAR] / HOLD #S #> TYPE SPACE ;

Let's follow the above definition, remembering that it is written in reverse order from the output.
The phrase

 # # [CHAR] / HOLD

produces the right-most two digits (representing the year) and the right-most slash. The next
occurence of the same phrase produces the middle two digits (representing the day) and the left-
most slash. Finally #S produces the left-most two digits (representing the month).

We could have just as easily defined

 # # [CHAR] / HOLD

as its own word and used this word twice in the definition of .DATE.

Since you have control over the conversion process, you can actually convert different digits in different number bases, a feature
which is useful in formatting such numbers as hours and minutes. For example, let's say that you have the time in seconds on the
stack, and you want a word which will print hh:mm:ss. You might define it this way:

http://www.amresearch.com/starting_forth/sf7/sf7.html (11 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

 : SEXTAL 6 BASE ! ;
 : :00 # SEXTAL # DECIMAL [CHAR] : HOLD ;
 : SEC <# :00 :00 #S #> TYPE SPACE ;

We will use the word :00 to format the seconds and minutes. Both seconds and minutes are
modulo-60, so the right digit can go as high as nine, but the left digit can only go up to five. Thus
in the definition of :00 we convert the first digit (the one on the right) as a decimal number,
then go into "sextal" (base 6) and convert the left digit. Finally, we return to decimal and insert
the colon character. After :00 converts the seconds and the minutes, #S converts the remaining
hours.

For example, if we had 4500 seconds on the stack, we would get

 4500. SEC 1:15:00 ok

Table 7-2 summarizes the Forth words that are used in number formatting. (Note the "KEY" at the bottom, which serves as a
reminder of the meanings of "n," "d," etc.)

Table 7-2 -- Number Formatting

<#

Begins the number conversion process. Expects the unsigned double-length number on the stack.

Converts one digit and puts it into an output character string. # always produces a digit--if you're out of significant
digits, you'll still get a zero for every #.

#S

Converts the number until the result is zero. Always produces at least one digit (0 if the value is zero).

c HOLD
Inserts, at the current position in the character string being formatted, a character whose ASCII value is on the
stack. HOLD (or a word which uses HOLD) must be used between <# and #>.

SIGN
Inserts a minus sign in the output string if the top of stack is negative. Usually used with ROT immediately before
#> for a leading minus sign.

#>

Completes number conversion by leaving the character count and address on the stack (these are the appropriate
arguments for TYPE).

Stack effects for number formatting

phrase stack type of arguments

<# ... #> (ud -- addr u) double-length unsigned

<# ... ROT SIGN #> (n |d| -- addr u)
double-length signed (where n is the high-order cell of d and |d| is the absolute value
of d).

KEY

n, n1, ... single-length signed

d, d1, ... double-length signed

u, u1, ... single-length unsigned

addr address

c ASCII character value

Number Formatting -- Signed and Single-length

So far we have formatted only unsigned double-length numbers. The <#...#> form expects only unsigned double-length numbers, but
we can use it for other types of numbers by making certain arrangements on the stack.

For instance, let's look at a simplified version of the system definition of D. (which prints a signed double-length number):

http://www.amresearch.com/starting_forth/sf7/sf7.html (12 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

 : D. TUCK DABS <# #S ROT SIGN #> TYPE SPACE ;

The phrase ROT SIGN inserts a minus string in the character string if the third number on the stack is negative. We have prepared for
this test by putting a copy of the high-order cell (the one with the sign bit) at the bottom of the stack, by using the word TUCK.

Because <# expects only unsigned double-length numbers, we must take the absolute value of our double-length signed number, with
the word DABS. We now have the proper arrangement of arguments on the stack for the <#...#> phrase. In some cases, such as
accounting, we may want a negative number to be written

 12345-

in which case we would place the phrase ROT SIGN at the left side of our <#...#> phrase, like this:

 <# ROT SIGN #S #>

$
Let's define a word which will print a signed double-length number with a decimal point and two decimal
places to the right of the decimal. Since this is the form most often used for writing dollars and cents, let's
call it .$ and define it like this:

 : .$ TUCK DABS <# # # [CHAR] . HOLD #S ROT SIGN [CHAR] $ HOLD #> TYPE
SPACE ;

Let's try it:

 2000.00 .$ $2000.00 ok

or even

 2,000.00 .$ $2000.00 ok

We recommend that you save .$, since we'll be using it in some future examples.

You can also write special formats for single-length numbers. For example, if you want to use an unsigned single-length number,
simply put a zero on the stack before the word <#. This effectively changes the single-length number into a double-length number
which is so small that it has nothing (zero) in the high-order cell.

To format a signed single-length number, again you must supply a zero as a high-order cell. But you must also leave a copy of the
signed number in the third stack position for ROT SIGN, and you must leave the absolute value of the number in the second stack
position. The phrase to do all this is

 DUP ABS 0

Here are the "set-up" phrases that are needed to print various kinds of numbers:

Number to be printed Precede <# by

double-length, unsigned (nothing needed)

63-bit, plus sign
TUCK DABS
(to save the sign in the third stack position for ROT SIGN)

single-length, unsigned
0
(to give a dummy high-order part)

31-bit, plus sign
DUP ABS 0
(to save the sign)

Double-length Operators

http://www.amresearch.com/starting_forth/sf7/sf7.html (13 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

Here is a list of double-length math operators:

D.R

(d width --) Prints the signed double-length number, right-justified within the field width.

D+

(d1 d2 -- d-sum) Adds two double-length numbers.

D-

(d1 d2 -- d-diff) Subtracts two double-length numbers (d1-d2).

DNEGATE

(d -- -d) Changes the sign of a double-length number.

DMAX

(d1 d2 -- d-max) Returns the maximum of two double-length numbers (d1-d2).

DMIN

(d1 d2 -- d-min) Returns the minimum of two double-length numbers (d1-d2).

D=

(d1 d2 -- f) Returns true if d1 and d2 are equal.

D0=

(d -- f) Returns true if d is zero.

D<

(d1 d2 -- f) Returns true if d1 is less than d2.

DU<

(ud1 ud2 -- f) Returns true if ud1 is less than ud2. Both numbers are unsigned.

The initial "D" signifies that these operators may only be used for double-length operations, whereas the initial "2," as in 2SWAP and
2DUP, signifies that these operators may be used either for double-length numbers or for pairs of numbers.

Here's an example using D+:

 200,000 300,000 D+ D. 500000 ok

Mixed-length Operators

Here's a table of very useful Forth words which operate on a combination of single- and double-length numbers:

http://www.amresearch.com/starting_forth/sf7/sf7.html (14 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

M+ (d n -- d-sum)
Adds a double-length number to a single-length number.
Returns a double-length result.

SM/REM (d n1 -- n2 n3)

Divide d1 by n1, giving the symmetric quotient n3 and
the remainder n2. Input and output stack arguments are
signed. An ambiguous condition exists if n1 is zero or if
the quotient lies outside the range of a single-cell signed
integer.

FM/MOD (d n1 -- n2 n3)

Divide d1 by n1, giving the floored quotient n3 and the
remainder n2. Input and output stack arguments are
signed. An ambiguous condition exists if n1 is zero or if
the quotient lies outside the range of a single-cell signed
integer.

M* (n1 n2 -- d-prod)
Multiplies two single-length numbers. Returns a double-
length result. All values are signed.

M*/ (d +n1 n2 -- d-result)

Multiplies a double-length number by a single-length
number and divides the triple-length result by a single-
length number (d*n/n). Returns a double-length result.
All values are signed.

Here's an example using M+:

 200,000 7 M+ D. 200007 ok

Or, using M*/, we can redefine our earlier version of % so that it will accept a double-length argument:

 : % 100 M*/ ;

as in

 200.50 15 % D. 3007 ok

If you have loaded the definition of .$ we gave in the last Handy Hint, you can enter

 200.50 15 % .$ $30.07 ok

We can redefine our earlier definition of R% to get a rounded double-length result, like this:

 : R% 10 M*/ 5 M+ 10 SM/REM NIP ;

then

 987.65 15 R% .$ $30.08 ok

Notice that M*/ is the only ready-made Forth word which performs multiplication on a double-length
argument. To multiply 200,000 by 3, for instance, we must supply a "1" as a dummy denominator:

 200,000 3 1 M*/ D. 600000 ok

since

 3
 1

is the same as 3.

M*/ is also the only ready-made Forth word that performs division with a double-length result. So to divide 200,000 by 4, for

http://www.amresearch.com/starting_forth/sf7/sf7.html (15 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

instance, we must supply a "1" as a dummy numerator:

 200,000 1 4 M*/ D. 50000 ok

Numbers in Definitions

When a definition contains a number, such as

 : SCORE-MORE 20 + ;

the number is compiled into the dictionary in binary form, just as it looks on the stack.

The number's binary value depends on the number base at the time you compile the definition. For example, if you were to enter

 HEX : SCORE-MORE 14 + ; DECIMAL

the dictionary definition would contain the hex value 14, which is the same as the decimal value 20 (16+4). Henceforth, SCORE-
MORE will always add the equivalent of the decimal 20 to the value on the stack, regardless of the current number base.

If, on the other hand, you were to put the word HEX inside the definition, then you would change the number base when you execute
the definition.

For example, if you were to define:

 DECIMAL
 : EXAMPLE HEX 20 . DECIMAL ;

the number would be compiled as the binary equivalent of decimal 20, since DECIMAL was current at compilation time.

At execution time, here's what happens:

 EXAMPLE 14 ok

The number is output in hexadecimal.

For the record, a number that appears inside a definition is called a "literal." (Unlike the words in the rest of the definition which
allude to other definitions, a number must be taken literally.)

Here is a list of the Forth words we've covered in this chapter:

Unsigned operators

U. (u --) Prints the unsigned single-length number, followed by one space.

UM* (u1 u2 -- ud) Multiplies two single-length numbers. Returns a double-length result. All values are unsigned.

http://www.amresearch.com/starting_forth/sf7/sf7.html (16 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

UM/MOD (ud u1 -- u2 u3)
Divides a double-length by a single-length number. Returns a single-length quotient and remainder. All
values are unsigned.

U< (u1 u2 -- f) Leaves true if u1 < u2, where both are treated as single-length unsigned integers.

Number bases

HEX (--) Sets the base to sixteen.

OCTAL (--) Sets the base to eight (available on some systems).

DECIMAL (--) Returns the base to ten.

Number formatting operators

<# Begins the number conversion process. Expects the unsigned double-length number on the stack.

Converts one digit and puts it into an output character string. # always produces a digit--if you're out of significant digits,
you'll still get a zero for every #.

#S Converts the number until the result is zero. Always produces at least one digit (0 if the value is zero).

c HOLD
Inserts, at the current position in the character string being formatted, a character whose ASCII value is on the stack.
HOLD (or a word which uses HOLD) must be used between <# and #>.

SIGN
Inserts a minus sign in the output string if the top of stack is negative. Usually used with ROT immediately before #> for
a leading minus sign.

#>
Completes number conversion by leaving the character count and address on the stack (these are the appropriate
arguments for TYPE).

Stack effects for number formatting

phrase stack type of arguments

<# ... #> (d -- addr u) double-length unsigned

<# ... ROT SIGN #> (n |d| -- addr u)
double-length signed (where n is the high-order cell of d and |d| is the absolute value
of d).

Double-length operators

D+ (d1 d2 -- d-sum) Adds two double-length numbers.

D- (d1 d2 -- d-diff) Subtracts two double-length numbers (d1-d2).

DNEGATE (d -- -d) Changes the sign of a double-length number.

DMAX (d1 d2 -- d-max) Returns the maximum of two double-length numbers (d1-d2).

DMIN (d1 d2 -- d-min) Returns the minimum of two double-length numbers (d1-d2).

D= (d1 d2 -- f) Returns true if d1 and d2 are equal.

D0= (d -- f) Returns true if d is zero.

D< (d1 d2 -- f) Returns true if d1 is less than d2.

DU< (ud1 ud2 -- f) Returns true if ud1 is less than ud2. Both numbers are unsigned.

D.R (d width --) Prints the signed double-length number, right-justified within the field width.

Mixed-length operators

M+ (d n -- d-sum) Adds a double-length number to a single-length number. Returns a double-length result.

SM/REM (d n1 -- n2 n3)
Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2. Input and output stack
arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient lies outside
the range of a single-cell signed integer.

http://www.amresearch.com/starting_forth/sf7/sf7.html (17 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

FM/MOD (d n1 -- n2 n3)
Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and output stack
arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient lies outside
the range of a single-cell signed integer.

M* (n1 n2 -- d-prod) Multiplies two single-length numbers. Returns a double-length result. All values are signed.

M*/ (d +n1 n2 -- d-result)
Multiplies a double-length number by a single-length number and divides the triple-length result
by a single-length number (d*n/n). Returns a double-length result. All values are signed.

KEY

n, n1, ... single-length signed

d, d1, ... double-length signed

u, u1, ... single-length unsigned

addr address

c ASCII character value

Review of Terms

Arithmetic left and right shift
the process of shifting all bits in a number, except the sign bit, to the left or right, in effect doubling
or halving the (assumed signed) number, respectively.

Logical left and right shift
the process of shifting all bits in a number, including the sign bit, to the left or right, in effect
doubling or halving the (assumed unsigned) number, respectively.

ASCII
a standarized system of representing input/output characters as byte values. Acronym for American
Standard Code for Information Interchange. (Pronounced ask-key)

Binary number base 2.

Byte the standard term for an 8-bit value.

Cell the Forth term for a single-cell value.

Decimal number base 10.

Hexadecimal number base 16.

Literal
in general, a number of symbol which represents only itself; in Forth, a number that appears inside a
definition.

Mask
a value which can be " superimposed" over another, hiding certain bits and revealing only those bits
that we are interested in.

Number formatting the process of printing a number, usually in a special form such as 3/13/03 or $47.93.

Octal number base 8.

Sign bit high-order bit
the bit which, for a signed number, indicates whether it is positive or negative and, for an unsigned
number, represents the bit of the highest magnitude.

Two's complement
for any number, the number of equal absolute value but opposite sign. To calculate 10 - 4, the
computer first produces the two's complement of 4, (i.e., -4), then computes 10 + (-4).

Unsigned number a number which is assumed to be positive.

Unsigned single-length number an integer which falls within the range of 0 to 2147483647.

Word In Forth, a defined dictionary entry, elsewhere, a term for a 16-bit value.

Integer division
produces a quotient q and a remainder r by dividing operand a by operand b. Division operations
return q, r, or both. The identity b*q + r = a holds for all a and b.

Floored division
is integer division in which the remainder carries the sign of the divisor or is zero, and the quotient is
rounded to its arithmetic floor.

Symmetric division
is integer division in which the remainder carries the sign of the dividend or is zero and the quotient
is the mathematical quotient "rounded towards zero" or "truncated".

Problems -- Chapter 7

http://www.amresearch.com/starting_forth/sf7/sf7.html (18 sur 20) [05/03/2005 04:55:14]

http://www.amresearch.com/starting_forth/sf7/sf7.html

1. Veronica Wainwright couldn't remember the upper limit for a signed single-length number, and she had no book to refer to,
only a Forth terminal. So she wrote a definition called N-MAX, using a BEGIN...UNTIL loop. When she executed it, she got

 2147483647 ok

What was her definition? [answer]
2. Since you now know that AND and OR employ bit logic, explain why the following example must use OR instead of +:

 : MATCH humorous sensitive AND
 art-loving music-loving OR AND
 smoking 0= AND
 IF ." I have someone you should meet " THEN ;

3. Write a definition that "rings" your terminal's bell three times. Make sure that there is enough of a delay between the bells so
that they are distinguishable. Each time the bell rings, the word "BEEP" should appear on the terminal screen. [answer]

a. Rewrite the temperature conversion definitions which you created for the problems in Chap. 5. This time assume that
the input and resulting temperatures are to be double-length signed integers which are scaled (i.e., multiplied) by ten.
For example, if 10.5 degrees is entered, it is a 32-bit integer with a value of 105. [answer]

b. Write a formatted output word named .DEG which will display a double-length signed integer scaled by ten as a string
of digits, a decimal point, and one fractional digit.

For example:

 12.3 .DEG 12.3 ok

[answer]
c. Solve the following conversions:

0.0o F in Centigrade
212.0o F in Centigrade
20.0o F in Centigrade
16.0o C in Fahrenheit
-40.0o C in Fahrenheit
100.0o K in Centigrade
100.0o K in Fahrenheit
233.0o K in Centigrade
233.0o K in Fahrenheit

a. Write a routine which evaluates the quadratic equation

 7x2 + 20x + 5

given x, and returns a double-length result.
b. How large an x will work without overflowing sixty-four bits as a signed number?

6. Write a word which prints the numbers 0 through 16 (decimal) in decimal, hexadecimal, and binary form in three columns.
E.g.,

 DECIMAL 0 HEX 0 BINARY 0
 DECIMAL 1 HEX 1 BINARY 1
 DECIMAL 2 HEX 2 BINARY 10
 ...
 DECIMAL 16 HEX 10 BINARY 10000

http://www.amresearch.com/starting_forth/sf7/sf7.html (19 sur 20) [05/03/2005 04:55:14]

http://home.iae.nl/users/mhx/sf7/7-1.gfs
http://home.iae.nl/users/mhx/sf7/7-3.gfs
http://home.iae.nl/users/mhx/sf7/7-4.gfs
http://home.iae.nl/users/mhx/sf7/7-4.gfs

http://www.amresearch.com/starting_forth/sf7/sf7.html

[answer]

7. If you enter

 ..

(two periods not separated by a space) and the system responds "ok," what does this tell you? [answer]
8. Write a definition for a phone-number formatting word that will also print the area code with a slash if and only if the number

includes an area code. E.g.,

 555-1234 .PH# 555-1234 ok
 213/372-8493 .PH# 213/372-8493 ok

[answer]

http://www.amresearch.com/starting_forth/sf7/sf7.html (20 sur 20) [05/03/2005 04:55:14]

http://home.iae.nl/users/mhx/sf7/7-6.gfs
http://home.iae.nl/users/mhx/sf7/7-7.gfs
http://home.iae.nl/users/mhx/sf7/7-8.gfs
http://validator.w3.org/

Leo Brodie's Starting Forth - Chapter 8

8 Variables, Constants, and Arrays
As we have seen throughout the previous seven chapters, Forth programmers use the stack to store numbers temporarily
while they perform calculations or to pass arguments from one word to another. When programmers need to store numbers
more permanently, they use variables and constants.

In this chapter, we'll learn how Forth treats variables and constants, and in the process we'll see how to directly access
locations in memory.

Variables

Let's start with an example of a situation in which you'd want to use a variable--to store the day's date. First we'll create a
variable called DATE. We do this by saying

 VARIABLE DATE

If today is the twelfth, we now say

 12 DATE !

that is, we put twelve on the stack, then give the name of the variable, then finally execute the word !, which is pronounced
store. This phrase stores the number twelve into the variable DATE.

Conversely, we can say

 DATE @

that is, we can name the variable, then execute the word @, which is pronounced fetch. This phrase fetches the twelve and
puts it on the stack. Thus the phrase

 DATE @ . 12 ok

prints the date.

To make matters even easier, there is a Forth word whose definition is this:

 : ? @ . ;

So instead of "DATE-fetch-dot," we can simply type

 DATE ? 12 ok

The value of DATE will be twelve until we change it. To change it, we simply store a new number

 13 DATE ! ok
 DATE ? 13 ok

Conceivably we could define additional variables for the month and year:

 VARIABLE DATE VARIABLE MONTH VARIABLE YEAR

then define a word called !DATE (for "store-the-date") like this:

http://www.amresearch.com/starting_forth/sf8/sf8.html (1 sur 18) [05/03/2005 04:55:34]

Leo Brodie's Starting Forth - Chapter 8

 : !DATE YEAR ! DATE ! MONTH ! ;

to be used like this:

 7 31 03 !DATE ok

then define a word called .DATE (for "print-the-date") like this:

 : .DATE MONTH ? DATE ? YEAR ? ;

Your Forth system already has a number of variables defined; one is called BASE. BASE contains the number base that
you're currently working in. In fact, the definition of HEX and DECIMAL (and OCTAL, if your system has it) are simply

 : DECIMAL 10 BASE ! ;
 : HEX 16 BASE ! ;
 : OCTAL 8 BASE ! ;

You can work in any number base by simply storing it into BASE.

For Experts

A three-letter code such as an airport terminal name, can be stored as a single-length unsigned number in base 36. For example:

 : ALPHA 36 BASE ! ; ok
 ALPHA ok
 ZAP U. ZAP ok

Somewhere in the definitions of the system words which perform input and output number conversions, you will find the
phrase

 BASE @

because the current value of BASE is used in the conversion process. Thus a single routine can convert numbers in any base.
This leads us to make a formal statement about the use of variables:

In Forth, variables are appropriate for any value that is used inside a definition which may
need to change at any time after the definition has already been compiled.

A Closer Look at Variables

When you create a variable such as DATE by using the phrase

 VARIABLE DATE

you are really compiling a new word, called DATE, into the dictionary. A simplified view would look like the view below.

4 D A T E DATE is like any other word in your dictionary except that you defined it with the word
VARIABLE instead of the word :. As a result, you didn't have to define what your definition would
do, the word VARIABLE itself spells out what is supposed to happen. And here is what happens:

When you say

http://www.amresearch.com/starting_forth/sf8/sf8.html (2 sur 18) [05/03/2005 04:55:34]

Leo Brodie's Starting Forth - Chapter 8

instruction code
appropriate for

variables

space for the
actual value
to be stored

 12 DATE !

Twelve goes onto the stack, after which the text interpreter looks up DATE in the dictionary and,
finding it, points it out to EXECUTE.

EXECUTE executes a variable by
copying the address of the variable's
"empty" cell (where the value will

go) onto the stack.

The word ! takes the
address (on top) and
the value
(underneath), and
stores the value into
that location.
Whatever number
used to be at that
address is replaced
by the new number.

(To remember what
order the arguments

belong in, think of setting down your parcel, then sticking the address label on top.)

The word @ expects one argument
only: an address, which in this case
is supplied by the name of the
variable, as in

 DATE @

Using the value on the stack as an
address, the word @ pushes the
contents of that location onto the
stack, "dropping" the address. (The
contents of the location remain
intact.)

Using a Variable
as a Counter

In Forth, a variable is ideal for keeping a count of something. To reuse our egg-packer example, we might keep track of how
many eggs go down the conveyor belt in a single day. (This example will work at your terminal, so enter it as we go.)

First we can define

 VARIABLE EGGS

to keep the count in. To start with a clean slate every morning, we could store a zero into EGGS by executing a word whose
definition looks like this:

 : RESET 0 EGGS ! ;

http://www.amresearch.com/starting_forth/sf8/sf8.html (3 sur 18) [05/03/2005 04:55:34]

Leo Brodie's Starting Forth - Chapter 8

Then somewhere in our egg-packing application, we would define a word which executes the following phrase every time an
egg passes an electric eye on the conveyor:

 1 EGGS +!

The word +! adds the given value to the contents of the given address. (It doesn't bother to tell you what the contents are.)
Thus the phrase

 1 EGGS +!

increments the count of eggs by one. For purposes of illustration, let's put this phrase inside a definition like this:

 : EGG 1 EGGS +! ;

At the end of the day, we would say

 EGGS ?

to find out how many eggs went by since morning.

Let's try it:

 RESET ok
 EGG ok
 EGG ok
 EGG ok
 EGGS ? 3 ok

Here's a review of the words we've covered in the chapter so far:

VARIABLE xxx
(--)
xxx: (-- addr)

Creates a variable named xxx; the word xxx returns its address when executed.

! (n addr --) Stores a single-length number into the address.

@ (addr -- n) Replaces the address with its contents.

? (addr --) Prints the contents of the address, followed by one space.

+! (n addr --) Adds a single-length number to the contents of the address.

Constants

5 L I M I T

instruction code
appropriate for

constants

220

While variables are normally used for values that may change, constants are used for values that
won't change. In Forth, we create a constant and set its value at the same time, like this:

 220 CONSTANT LIMIT

Here we have defined a constant named LIMIT, and given it the value 220. Now we can use the
word LIMIT in place of the value, like this:

http://www.amresearch.com/starting_forth/sf8/sf8.html (4 sur 18) [05/03/2005 04:55:34]

Leo Brodie's Starting Forth - Chapter 8

 : ?TOO-HOT LIMIT > IF ." Danger -- reduce heat " THEN ;

If the number on the stack is greater than 220, then the warning message will be printed.

Notice that when we say

 LIMIT

we get the value, not the address. We don't need the "fetch."

This is an important difference between variables and constants. The reason for the difference is that with variables, we need
the address to have the option of fetching or storing. With constants we always want the value; we absolutely never store. (If
you really need to store a new value into a "constant", you should use a VALUE.)

One use for constants is to name a hardware address. For example, a microprocessor-controlled portable camera application
might contain this definition:

 : PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;

Here the word SHUTTER has been defined as a constant so that execution of SHUTTER returns the hardware address of the
camera's shutter. It might, for example, be defined:

 HEX
 FFFF3E27 CONSTANT SHUTTER
 DECIMAL

The words OPEN and CLOSE might be defined simply as

 : OPEN 1 SWAP ! ;
 : CLOSE 0 SWAP ! ;

so that the phrase

 SHUTTER OPEN

writes a "1" to the shutter address, causing the shutter to open.

Here are some situations when it's good to define numbers as constants:

1. When it's important that you make your application more readable. One of the elements of Forth style is that
definitions should be self-documenting, as is the definition of PHOTOGRAPH above.

2. When it's more convenient to use a name instead of the number. For example, if you think you may have to change the
value (because, for instance, the hardware might get changed) you will only have to change the value once--in the file
where the constant is defined--then recompile your application.

3. (Only true for less sophisticated Forth compilers) When you are using the same value many times in your application.
In the compiled form of a definition, reference to a constant requires less memory space.

CONSTANT xxx
(n --)
xxx: (-- n)

Creates a constant named xxx with the value n; the word xxx returns n when executed.

Double-length Variables and Constants

You can define a double-length variable by using the word 2VARIABLE. For example,

http://www.amresearch.com/starting_forth/sf8/sf8.html (5 sur 18) [05/03/2005 04:55:34]

Leo Brodie's Starting Forth - Chapter 8

 2VARIABLE DATE

Now you can use the Forth words 2! (pronounced two-store) and 2@ (pronounced two-fetch) to access this double-length
variable. You can store a double-length number into it by simply saying

 800,000 DATE 2!

and fetch it back with

 DATE 2@ D. 800000 ok

Or you can store the full month/date/year into it, like this:

 7/17/03 DATE 2!

and fetch it back with

 DATE 2@ .DATE 7/17/03 ok

assuming that you've loaded the version of .DATE we gave in the last chapter.

You can define a double-length constant by using the Forth word 2CONSTANT, like this:

 200,000 2CONSTANT APPLES

Now the word APPLES will place the double-length number on the stack.

 APPLES D. 200000 ok

Of course, we can do:

 400,000 2CONSTANT MUCH
 : MUCH-MORE 200,000 D+ MUCH D+ ;

in order to be able to say

 APPLES MUCH-MORE D. 800000 ok

As the prefix "2" reminds us, we can also use 2CONSTANT to define a pair of single-length numbers. The reason for putting
two numbers under the same name is a matter of convenience and of saving space in the dictionary.

As an example, recall (from Chap. 5) that we can use the phrase

 355 113 */

to multiply a number by a crude approximation of π. We could store these two integers as a 2CONSTANT as follows:

 355 113 2CONSTANT PI

then simply use the phrase

 PI */

http://www.amresearch.com/starting_forth/sf8/sf8.html (6 sur 18) [05/03/2005 04:55:34]

Leo Brodie's Starting Forth - Chapter 8

as in

 10000 PI */ . 31415 ok

Here is a review of the double-length data-structure words:

2CONSTANT xxx
(d --)
xxx: (-- d)

Creates a double-length constant named xxx with the value d; the word xxx returns
d when executed.

2VARIABLE xxx
(--)
xxx: (-- addr)

Creates a double-length variable named xxx; the word xxx returns its address when
executed.

2! (d addr --) Stores a double-length number into the address.

2@ (addr -- d) Returns the double-length contents of the address.

Arrays

4 D A T E

code

room for a
single-length value

As you know, the phrase

 VARIABLE DATE

creates a definition which conceptually looks like that at the right.

Now if you say

 1 CELLS ALLOT

an additional cell is allotted in the definition, like this:

4 D A T E

code

room for a
single-length

value

ditto

The result is the same as if you had used 2VARIABLE. By changing the argument to ALLOT,
however, you can define any number of variables under the same name. Such a group of variables is
called an "array."

For example, let's say that in our laboratory, we have not just one, but five burners that heat various
kinds of liquids.

We can make our word ?TOO-HOT check that all five burners have not exceeded their individual
limit if we define LIMIT using an array rather than a constant.

Let's give the array the name LIMITS, like this:

 VARIABLE LIMITS 4 CELLS ALLOT

The phrase "4 CELLS ALLOT" gives the array an extra four cells (five cells in all).

6 L I M I T S
Suppose we want the limit for burner 0 to be 220. We can store this value by
simply saying

 220 LIMITS !

because LIMITS returns the address of the first cell in the array. Suppose we
want the limit for burner 1 to be 340. We can store this value by adding 1

http://www.amresearch.com/starting_forth/sf8/sf8.html (7 sur 18) [05/03/2005 04:55:34]

Leo Brodie's Starting Forth - Chapter 8

code

room for burner-0's limit

room for burner-1's limit

room for burner-2's limit

room for burner-3's limit

room for burner-4's limit

address

3160

3164

3168

316C

3170

CELLS to the address of the original cell, like this:

 340 LIMITS 1 CELLS + !

We can store limits for burners 2, 3, and 4 by adding the "offsets" 2 CELLS, 3
CELLS, and 4 CELLS, respectively, to the original address. We can define the
convenient word

 : LIMIT (burner# -- addr) CELLS LIMITS + ;

to take a burner number on the stack and compute an address that reflects the
appropriate offset.

Now if we want the value 170 to be the limit for burner 2, we simply say

 170 2 LIMIT !

or similarly, we can fetch the limit for burner 2 with the phrase

 2 LIMIT ? 170 ok

This technique increases the usefulness of the word LIMIT, so that we can redefine ?TOO-HOT as follows:

 : ?TOO-HOT (temp burner# --)
 LIMIT @ > IF ." Danger -- reduce heat " THEN ;

which works like this:

 210 0 ?TOO-HOT ok
 230 0 ?TOO-HOT Danger -- reduce heat ok
 300 1 ?TOO-HOT ok
 350 1 ?TOO-HOT Danger -- reduce heat ok

etc.

Another Example -- Using an Array for Counting

Meanwhile, back at the egg ranch:

Here's another example of an array. In this example, each element of the array is used as a separate counter. Thus we can
keep track of how many cartons of "extra large" eggs the machine has packed, how many "large," and so forth.

Recall from our previous definition of EGGSIZE (in Chap. 4) that we used four categories of acceptable eggs, plus two
categories of "bad eggs."

 0 CONSTANT REJECT
 1 CONSTANT SMALL
 2 CONSTANT MEDIUM
 3 CONSTANT LARGE
 4 CONSTANT EXTRA-LARGE
 5 CONSTANT ERROR

So let's create an array that is six cells long:

http://www.amresearch.com/starting_forth/sf8/sf8.html (8 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

 VARIABLE COUNTS 5 CELLS ALLOT

The counts will be incremented using the word +!, so we must be able to set all the elements of the array to zero before we
begin counting. The phrase

 COUNTS 6 CELLS 0 FILL

will fill 6 cells , starting at the address of COUNTS, with zeros. If your Forth system includes the word ERASE, it's better to
use it in this situation. ERASE fills the given number of bytes with zeroes. Use it like this:

 COUNTS 6 CELLS ERASE

FILL (addr n b --) Fills n bytes of memory, beginning at the address, with value b.

ERASE (addr n --) Stores zeroes into n bytes of memory, beginning at the address.

For convenience, we can put the phrase inside a definition, like this:

 : RESET COUNTS 6 CELLS ERASE ;

Now let's define a word which will give us the address of one of the counters, depending on the category number it is given
(0 through 5), like this:

 : COUNTER CELLS COUNTS + ;

and another word which will add one to the counter whose number is given, like this:

 : TALLY COUNTER 1 SWAP +! ;

The "1" serves as the increment for +!, and SWAP puts the arguments for +! in the order they belong, i.e., (n addr --).

Now, for instance, the phrase

 LARGE TALLY

will increment the counter that corresponds to large eggs.

Now let's define a word which converts the weight per dozen into a category number:

 : CATEGORY (weight -- category)
 DUP 18 < IF REJECT ELSE
 DUP 21 < IF SMALL ELSE
 DUP 24 < IF MEDIUM ELSE
 DUP 27 < IF LARGE ELSE
 DUP 30 < IF EXTRA-LARGE ELSE
 ERROR

 THEN THEN THEN THEN THEN NIP ;

(By the time we'll get to the NIP, we will have two values on the stack: the weight which we have been DUPping and the
category number, which will be on top. We want only the category number; "NIP" eliminates the weight.)

For instance, the phrase

http://www.amresearch.com/starting_forth/sf8/sf8.html (9 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

 25 CATEGORY

will leave the number 3 (LARGE) on the stack. The above definition of CATEGORY resembles our old definition of
EGGSIZE, but, in the true Forth style of keeping words as short as possible, we have removed the output messages from the
definition. Instead, we'll define an additional word which expects a category number and prints an output message, like this:

 : LABEL (category --)
 CASE
 REJECT OF ." reject " ENDOF
 SMALL OF ." small " ENDOF
 MEDIUM OF ." medium " ENDOF
 LARGE OF ." large " ENDOF
 EXTRA-LARGE OF ." extra large " ENDOF
 ERROR OF ." error " ENDOF
 ENDCASE ;

For example:

 SMALL LABEL small ok

Now we can define EGGSIZE using three of our own words:

 : EGGSIZE CATEGORY DUP LABEL TALLY ;

Thus the phrase

 23 EGGSIZE

will print

 medium ok

at your terminal and update the counter for medium eggs.

How will we read the counters at the end of the day? We could check each cell in the array separately with a phrase such as

 LARGE COUNTER ?

(which would tell us how many "large" cartons were packed). But let's get a little fancier and define our own word to print a
table of the day's results in this format:

 QUANTITY SIZE
 1 reject
 112 small
 132 medium
 143 large
 159 extra large
 0 error

Since we have already devised category numbers, we can simply use a DO and index on the category number, like this:

 : REPORT (--)
 PAGE ." QUANTITY SIZE" CR CR
 6 0 DO I COUNTER @ 5 U.R

http://www.amresearch.com/starting_forth/sf8/sf8.html (10 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

 7 SPACES
 I LABEL CR
 LOOP ;

(The phrase "I COUNTER @ 5 U.R" takes the category number given by I, indexes into the array, and prints the contents
of the proper element in a five-column field.)

Factoring Definitions

This is a good time to talk about factoring as it applies to Forth definitions. We've just seen an example in which factoring
simplified our problem.

Our first definition of EGGSIZE from Chap. 4, categorized eggs by weight and printed the name of the categories at the
terminal. In our present version we factored out the "categorizing" and the "printing" into two separate words. We can use the
word CATEGORY to provide the argument either for the printing word or the counter-tallying word (or both). And we can use
the printing word, LABEL, in both EGGSIZE and REPORT.

As Charles Moore, the inventor of Forth, has written:

A good Forth vocabulary contains a large number of small words. It is not enough to break a problem into
small pieces. The object is to isolate words that can be reused.

For example, in the recipe:

Get a can of tomato sauce.
Open can of tomato sauce.
Pour tomato sauce into pan.
Get can of mushrooms.
Open can of mushrooms.
Pour mushrooms into pan.

you can "factor out" the getting, opening, and pouring, since they are common to both cans. Then you can give the factored-
out process a name and simply write:

 TOMATOES ADD
 MUSHROOMS ADD

and any chef who's graduated from the Postfix School of Cookery will know exactly what you mean.

Not only does factoring make a program easier to write (and fix!), it saves memory space, too. A reusable word such as ADD
gets defined only once. The more complicated the application, the greater the savings.

Here is another thought about Forth style before we leave the egg ranch. Recall our definition of EGGSIZE

 : EGGSIZE CATEGORY DUP LABEL TALLY ;

CATEGORY gave us a value which we wanted to pas on to both LABEL and TALLY, so we included the DUP. To make the
definition "cleaner," we might have been tempted to take the DUP out and put it inside the definition of LABEL, at the
beginning. Thus we might have written:

 : EGGSIZE CATEGORY LABEL TALLY ;

where CATEGORY passes the value to LABEL, and LABEL passes it on to TALLY. Certainly this approach would have
worked. But then, when we defined REPORT, we would have had to say

http://www.amresearch.com/starting_forth/sf8/sf8.html (11 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

 I LABEL DROP

instead of simply

 I LABEL

Forth programmers tend to follow this convention: when possible, words should destroy their own parameters. In general, it's
better to put the DUP inside the "calling definition" (EGGSIZE, here) than in the "called" definition (LABEL, here).

Another Example -- "Looping" through an Array

We'd like to introduce a little technique that is relevant to arrays. We can best illustrate this technique by writing our own
definition of a Forth word called DUMP. DUMP is used to print out the contents of a series of memory addresses. The usage
is

 addr count DUMP

For instance, we could enter

 COUNTS 6 DUMP

to print the contents of our egg-counting array called COUNTS. Since DUMP is primarily designed as a programming tool to
print out the contents of memory locations, it prints either byte-by-byte or cell-by-cell, depending on the type of addressing
our computer uses. Our version of DUMP will print cell-by-cell.

Obviously DUMP will involve a DO loop. The question is: what should we use for an index? Although we might use the
count itself (0 - 6) as the loop index, it's better to use the address as the index.

The address of COUNTS will be the starting index for the loop, while the address plus the count will serve as the limit, like
this:

 : DUMP (addr cell-count --)
 CELLS OVER + SWAP
 DO CR I @ 5 U.R
 1 CELLS +LOOP ;

The key phrase here is

 CELLS OVER + SWAP

which immediately precedes the DO.

The ending and starting addresses are now on the stack, ready to serve as the limit and index for
the DO loop. Since we are "indexing on the addresses," once we are inside the loop we merely
have to say

 I @ 5 U.R

to print the contents of each element of the array. Since we are examining cells (@ fetches a
single-length, single cell value), we increment the index by one cell each time, by using

 1 CELLS +LOOP

http://www.amresearch.com/starting_forth/sf8/sf8.html (12 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

Byte Arrays

Forth lets you create an array in which each element consists of a single byte rather than a full cell. This is useful any time
you are storing a series of numbers whose range fits into that which can be expressed within eight bits.

The range of an unsigned 8-bit number is 0 to 255. Byte arrays are also used to store ASCII character strings. The benefit of
using a byte array instead of a cell array is that you can get the same amount of data in 25% (32-bit Forth) of the memory
space.

The mechanics of using a byte array are the same as using a cell array except that

1. you don't have to use CELLS to manipulate the offset, since each element corresponds to one address unit, and
2. you must use the words C! and C@ instead of ! and @. These words, which operate on byte values only, have the

prefix "C" because their typical use is accepting ASCII characters.

C! (b addr --) Stores an 8-bit value into the address.

C@ (addr -- b) Fetches an 8-bit value from the address.

Initializing an Array

Many situations call for an array whose values never change during the operation of the application and which may as well be
stored into the array at the same time that the array is created, just as CONSTANTs are. Forth provides the means to
accomplish this through the two words CREATE and , (pronounced create and comma).

Suppose we want permanent values in our LIMITS array. Instead of saying

 VARIABLE LIMITS 4 CELLS ALLOT

we can say

 CREATE LIMITS 220 , 340 , 170 , 100 , 190 ,

Usually the above line would be included from a disk file, but it also works interactively.

Like the word VARIABLE, CREATE puts a new name in the dictionary at compile time and returns the address of that
definition when it is executed. But it does not "allot" any bytes for a value.

The word , takes a number off the stack and stores it into the array. So each time you express a number and follow it with ,,
you add one cell to the array.

http://www.amresearch.com/starting_forth/sf8/sf8.html (13 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

For Newcomers

Ingrained habits, learned from English writing, lead some newcomers to forget to type the final , in the line. Remember that , does
not separate the numbers, it compiles them.

You can access the elements in a CREATE array just as you would the elements in a VARIABLE array. For example:

 LIMITS CELL+ @ . 340 ok

You can even store new values into the array, just as you would into a VARIABLE array.

To initialize a byte-array that has been defined with CREATE, you can use the word C, (c-comma). For instance, we could
store each of the values used in our egg-sorting definition CATEGORY as follows:

 CREATE SIZES 18 C, 21 C, 24 C, 27 C, 30 C, 255 C,

This would allow us to redefine CATEGORY using a DO loop rather than as a series of nested IF...THEN statements, as
follows

 : CATEGORY 6 0 DO DUP SIZES I + C@ < IF DROP I LEAVE THEN LOOP ;

Note that we have added a maximum (255) to the array to simplify our definition regarding category 5.

Including the initialization of the SIZES array, this version takes only three lines of source text as opposed to six and takes
less space in the dictionary, too.

For People Who Don't Like Guessing How It Works

The idea here is this: since there are five possible categories, we can use the category numbers as our loop index. Each time

http://www.amresearch.com/starting_forth/sf8/sf8.html (14 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

around, we compare the number on the stack against the element in SIZES, offset by the current loop index. As soon as the
weight on the stack is greater than one of the elements in the array, we leave the loop and use I to tell us how many times we had
looped before we "left." Since this number is our offset into the array, it will also be our category number.

Here's a list of the Forth words we've covered in this chapter:

CONSTANT xxx
(n --)
xxx: (-- n)

Creates a constant named xxx with the value n; the word xxx returns n when executed.

VARIABLE xxx
(--)
xxx: (-- addr)

Creates a variable named xxx; the word xxx returns its address when executed.

CREATE xxx
(--)
xxx: (-- addr)

Creates a dictionary entry (head and code pointer only) named xxx; the word xxx returns
its address when executed.

! (n addr --) Stores a single-length number into the address.

@ (addr -- n) Replaces the address with its contents.

? (addr --) Prints the contents of the address, followed by one space.

+! (n addr --) Adds a single-length number to the contents of the address.

ALLOT (n --) Adds n bytes to the body of the most recently defined word.

, (n --) Compiles n into the next available cell in the dictionary.

C! (b addr --) Stores an 8-bit value into the address.

C@ (addr -- b) Fetches an 8-bit value from the address.

FILL (addr n b --) Fills n bytes of memory, beginning at the address, with value b.

BASE (n --) A variable which contains the value of the number base being used by the system.

2CONSTANT xxx
(d --)
xxx: (-- d)

Creates a double-length constant named xxx with the value d; the word xxx returns d
when executed.

2VARIABLE xxx
(--)
xxx: (-- addr)

Creates a double-length variable named xxx; the word xxx returns its address when
executed.

2! (d addr --) Stores a double-length number into the address.

2@ (addr -- d) Returns the double-length contents of the address.

C, (b --) Compiles b into the next available byte in the dictionary.

DUMP (addr u --) Displays u bytes of memory, starting at the address.

ERASE (addr n --) Stores zeroes into n bytes of memory, beginning at the address.

KEY

n, n1, ... single-length signed

d, d1, ... double-length signed

u, u1, ... single-length unsigned

ud, ud1, ... double-length unsigned

addr address

c ASCII character value

b 8-bit byte

f Boolean flag

Review of Terms

Array
a series of memory locations with a single name. Values can be stored and fetched into the individual locations by
giving the name of the array and adding an offset to the address.

Constant a value which has a name. The value is stored in memory and usually never changes.

http://www.amresearch.com/starting_forth/sf8/sf8.html (15 sur 18) [05/03/2005 04:55:35]

Leo Brodie's Starting Forth - Chapter 8

Factoring
as it applies to programming in Forth, simplifying a large job by extracting those elements which might be reused
and defining those elements as operations.

Fetch to retrieve a value from a given memory location.

Initialize to give a variable (or array) its initial value(s) before the rest of the program begins.

Offset
a number which can be added to the address of the beginning of an array to produce the address of the desired
location within the array.

Store to place a value in a given memory location.

Variable a location in memory which has a name and in which values are frequently stored and fetched.

Problems -- Chapter 8

1. Write two words called BAKE-PIE and EAT-PIE. The first word increases the number of available PIES by
one. The second decreases the number by one and thanks you for the pie. But if there are no pies, it types
"What pie?" (make sure you start out with no pies.)

 EAT-PIE What pie?
 BAKE-PIE ok
 EAT-PIE Thank you! ok

2. Write a word called FREEZE-PIES which takes all the available pies and adds them to the number of pies in
the freezer. Remember that frozen pies cannot be eaten.

 BAKE-PIE BAKE-PIE FREEZE-PIES ok
 PIES ? 0 ok
 FROZEN-PIES ? 2 ok

[answer]
2. Define a word called .BASE which prints the current value of the variable BASE in decimal. Test it by first changing

BASE to some value other than ten. (This one is trickier than it may seem.)

 DECIMAL .BASE 10 ok
 HEX .BASE 16 ok

[answer]
3. Define a number-formatting word called M. which prints a double-length number with a decimal point. The position

of the decimal point witin the number is movable and depends on the value of a variable that you will define as
PLACES. For example, if you store a "1" into PLACES, you will get

 200,000 M. 20000.0 ok

that is, with the decimal point one place from the right. A zero in PLACES should produce no decimal point at all.
[answer]

4. In order to keep track of the inventory of colored pencils in your office, create an array, each cell of which contains
the count of a different colored pencil. Define a set of words so that, for example, the phrase

http://www.amresearch.com/starting_forth/sf8/sf8.html (16 sur 18) [05/03/2005 04:55:35]

http://home.iae.nl/users/mhx/sf8/8-1.gfs
http://home.iae.nl/users/mhx/sf8/8-2.gfs
http://home.iae.nl/users/mhx/sf8/8-3.gfs

Leo Brodie's Starting Forth - Chapter 8

 RED PENCILS

returns the address of the cell that contains the count of red pencils, etc. Then set these variables to indicate the
following counts:

 23 red pencils
 15 blue pencils
 12 green pencils
 0 orange pencils

[answer]
5. A histogram is a graphic representation of a series of values. Each value is shown by the height or length of a bar. In

this exercise you will create an array of values and print a histogram which displays a line of "*"s for each value. First
create an array with about ten cells. Initialize each element of the array with a value in the range of zero to seventy.
Then define a word PLOT which will print a line for each value. On each line print the number of the cell followed by
a number of "*"s equal to the contents of that cell.

For example, if the array has four cells and contains the values 1, 2, 3 and 4, then PLOT would produce:

 1 *
 2 **
 3 ***
 4 ****

[answer]
6. Create an application that displays a tic-tac-toe board, so that two human players can make their moves by entering

them from the keyboard. For example, the phrase

 4 X!

puts an "X" in box 4 (counting starts with 1) and produces this display:

 | |

 X | |

 | |

Then the phrase

 3 O!

puts an "O" in box 3 and prints the display:

 | | O

 X | |

 | |

Use a byte array to remember the contents of the board, with the value 1 to signify "X," a -1 to signify a "O," and a 0
to signify an empty box. [answer]

http://www.amresearch.com/starting_forth/sf8/sf8.html (17 sur 18) [05/03/2005 04:55:35]

http://home.iae.nl/users/mhx/sf8/8-4.gfs
http://home.iae.nl/users/mhx/sf8/8-5.gfs
http://home.iae.nl/users/mhx/sf8/8-6.gfs

Leo Brodie's Starting Forth - Chapter 8

http://www.amresearch.com/starting_forth/sf8/sf8.html (18 sur 18) [05/03/2005 04:55:35]

http://validator.w3.org/

http://www.amresearch.com/starting_forth/sf9/sf9.html

9 Under the Hood
Let's stop for a chapter to lift Forth's hood and see what goes on inside.

Some of the information contained herein we've given earlier, but, at the risk of redundancy, we're now going to view the Forth "machine" as a whole, to see
how it all fits together.

Inside INTERPRET

Back in the first chapter we learned that the text interpreter, whose name is INTERPRET, picks words out of the input stream and tries to find their
definitions in the dictionary. If it finds a word, INTERPRET has it executed.

We can perform these separate operations ourselves by using words that perform the component functions of INTERPRET. For instance, the word '
(pronounced tick) finds a definition in the dictionary and returns its execution token. If we have defined GREET as we did in Chap. 1, we can now say

 ' GREET U. 4956608 ok

and discover the execution token of GREET (whatever it happens to be).

We may also directly use EXECUTE. INTERPRET will execute a definition, given its execution token ("xt") on the stack. Thus we can say

 ' GREET EXECUTE Hello, I speak Forth ok

and accomplish the same thing as if we had merely said GREET, only in a more roundabout way.

If tick cannot find a word in the dictionary, it executes ABORT" and prints an error message.

Forth's text interpreter uses a word related to tick that returns a zero flag if the word is found. The name and usage of the word varies, but the conditional
structure of the INTERPRET phrase always looks like this:

 (find the word) IF (convert to a number)
 ELSE (execute the word)
 THEN

http://www.amresearch.com/starting_forth/sf9/sf9.html (1 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

that is, if the string is not a defined word in the dictionary, INTERPRET tries to convert it as a number. If it is a defined word, INTERPRET executes it.

The word ' has several uses. For instance, you can use the phrase

 ' GREET .

to find out whether GREET has been defined, without actually having to execute it (it will either print the xt or respond with an error).

You can also use the xt to DUMP the contents of the definition, like this:

 ' GREET 12 CELLS DUMP
 A054620: 68 13 40 00 00 00 00 00 - 60 3D 03 0A 15 48 65 6C
h.@.....`=...Hel
 A054630: 6C 6F 2C 20 49 20 73 70 - 65 61 6B 20 46 6F 72 74 lo, I speak
Fort
 A054640: 68 20 20 20 38 02 41 00 - 00 00 00 00 00 00 00 00 h
8.A.........
 ok

Or you can use tick to implement something called "vectored execution." Which brings us to the next section ...

Vectored Execution

While it sounds hairy, the idea of vectored execution is really quite simple. Instead of executing a definition directly, as we did with the phrase

 ' GREET EXECUTE

we can execute it indirectly by keeping its xt in a variable, then executing the contents of the variable, like this:

 ' GREET pointer !
 pointer @ EXECUTE

The advantage is that we can change the pointer later, so that a single word can be made to perform different things at different times.

http://www.amresearch.com/starting_forth/sf9/sf9.html (2 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

Here is an example that you can try yourself:

 (1) : HELLO ." Hello " ;
 (2) : GOODBYE ." Goodbye " ;
 (3) VARIABLE 'aloha ' HELLO 'aloha !
 (4) : ALOHA 'aloha @ EXECUTE ;

In the first two lines, we've simply created words which print the strings "Hello" and "Goodbye." In line 3, we've defined a variable called 'aloha. This will
be our pointer. We've initialized the pointer with the xt of HELLO. In line 4, we've defined the word ALOHA to execute the definition whose xt is in 'aloha.

Now if we execute ALOHA, we will get

 ALOHA Hello ok

Alternatively, if we execute the phrase

 ' GOODBYE 'aloha !

to store the xt of GOODBYE into 'aloha, we will get

 ALOHA Goodbye ok

Thus the same word, ALOHA, can do two different things.

Notice that we named our pointer 'aloha (which we would pronounce tick-aloha). Since tick provides an xt, we use it as a prefix to suggest "the xt of"
ALOHA. It is a Forth convention to use this prefix for vectored execution pointers.

Tick always goes to the next word in the input stream. What if we put tick inside a definition? When we execute the definition, tick will find the next word in
the input stream, not the next word in the definition. Thus we could define

 : SAY ' 'aloha ! ;

then enter

 SAY HELLO ok

http://www.amresearch.com/starting_forth/sf9/sf9.html (3 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

 ALOHA Hello ok

or

 SAY GOODBYE ok
 ALOHA Goodbye ok

to store the xt of either HELLO or GOODBYE into 'aloha.

But what if we want tick to use the next word in the definition? We must use the word ['] (bracket-tick-bracket) instead of tick. For example:

 : COMING ['] HELLO 'aloha ! ;
 : GOING ['] GOODBYE 'aloha ! ;

Now we can say

 COMING ok
 ALOHA Hello ok
 GOING ok
 ALOHA Goodbye ok

Here are the commands we've covered so far:

' xxx (-- addr) Attempts to find the execution token of xxx (the word that follows in the input stream) in the dictionary.

[']

compile time
(--)
run time
(-- addr)

Used only in a colon definition, compiles the execution token of the next word in the definition as a literal.

The Structure of a Dictionary Entry

All definitions, whether they have been defined by :, by VARIABLE, by VALUE, by CREATE, or by any other "defining word," share these basic parts:

http://www.amresearch.com/starting_forth/sf9/sf9.html (4 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

 name field
 link field
 code pointer field
 data field

Using the variable DATE as an example, here's how these components are arranged within each dictionary entry. In this diagram, each horizontal line
represents one cell in the dictionary:

No two Forth systems are alike in this respect. There may be more basic parts, their size may differ, and the order of the components almost certainly differs.

In this book we're only concerned with the functions of the four components, not with their order inside a dictionary entry.

Name

http://www.amresearch.com/starting_forth/sf9/sf9.html (5 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

In our example, the first byte contains the number of characters in the full name of the defined word (there are four letters in DATE). The next four bytes
contain the ASCII representations of the four letters in the name of the defined word.

Notice the "precedence bit" in the diagram. This bit is used during compilation to indicate whether the word is supposed to be executed during compilation,
or to simply be compiled into the new definition. More on this in Chap. 11.

Link

The "link" cell contains the address of the previous definition in the dictionary list. The link cell can be used in linearly searching the dictionary. To simplify
things a bit, imagine that it works this way:

http://www.amresearch.com/starting_forth/sf9/sf9.html (6 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

Each time the compiler adds a new word to the dictionary, he sets the link field to point to the
address of the previous definition. Here he is setting the link field of CUISINART to point to
the definition of CAR.

At search time, tick (or
bracket-tick-bracket, etc.)
starts with the most recent
word and follows the "chain"
backwards, using the address
in each link cell to locate the
next definition back.

The link field of the first
definition in the dictionary
contains a zero, which tells
tick to give up; the word is not
in the dictionary.

Code Pointer

http://www.amresearch.com/starting_forth/sf9/sf9.html (7 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

Next is the "code pointer." The xt contained in this pointer is what distinguishes a variable from a constant or a colon definition. It is the address of the
instruction that is executed first when a particular type of word is executed. Conceptually, in the case of a variable, the pointer points to code that pushes the
address of the variable on the data stack. In the case of a constant, the pointer points to code that pushes the contents of the constant on the data stack. In the
case of a colon definition, the pointer points to code that executes the rest of the words in the colon definition. In practice there are many ways to implement
this concept, including native code realizations.

The code that is pointed to is called the "run-time code" because it is used when a word of that type is executed (not when a word of that type is defined or
compiled).

http://www.amresearch.com/starting_forth/sf9/sf9.html (8 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

All variables (conceptually) have the same code pointer; all constants have the same code pointer of their own, and so on.

Data field

Following the code pointer is the data field. In variables and constants, the data field is only one cell. In a 2VARIABLE or a 2CONSTANT, the data field is
two cells. In an array, the data field can be as long as you want it. In a colon definition, the length of the data field depends on the length of the definition, as
we'll explain in the next section. Strictly speaking, the colon definition of a modern Forth does not have a data field.

The xt that is supplied by tick and expected by EXECUTE is the code pointer defined above. The beginning of the data field can be found with >BODY, a
word that computes the data field given an xt. >BODY does not work for colon definitions. Some Forths may even forbid the use of >BODY on any system
data structure (variables constants, user, etc.).

The Basic Structure of a Colon Definition

While the format of the head and code pointer is the same for all types of definitions, the format of the data field varies from type to type. Let's look at the
data field of a colon definition.

The data field of a colon definition contains the xts of the previously defined words which comprise the definition. Here is the dictionary entry for the
definition of PHOTOGRAPH, which is defined as

 : PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;

http://www.amresearch.com/starting_forth/sf9/sf9.html (9 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

When PHOTOGRAPH is executed, the definitions that are pointed to by the successive xts are executed in turn.
The mechanism which reads the list of xts and executes the definitions they point to is called the "address
interpreter."

The word ; at the end of the definition compiles the xt of a word called EXIT. As you can see in the figure, the
xt of EXIT resides in the last cell of the dictionary entry. The address interpreter will execute EXIT when it
gets to this address, just as it executes the other words in the definition. EXIT terminates the execution of the
address interpreter, as we will see in the next section.

Nested Levels of Execution

The function of EXIT is to return the flow of execution to the next higher-level definition that refers to the
current definition. Let's see how this works in simplified terms.

Suppose that DINNER consists of three courses:

 : DINNER SOUP ENTREE DESSERT ;

and that tonight's ENTREE consists simply of

 : ENTREE CHICKEN RICE ;

http://www.amresearch.com/starting_forth/sf9/sf9.html (10 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

We are executing DINNER and we have just finished the SOUP. The pointer
that is used by the address interpreter is called the "interpreter pointer". Since
the next course after the SOUP is the ENTREE, our interpreter pointer is
pointing to the cell that contains the xt of ENTREE.

The action the address interpreter performs can be seen as "subroutine
calling" all the xts in the list, with the return stack used to keep return
adresses, and the EXIT working as the machine's RTS (return from
subroutine) instruction.

One Step Beyond

Now you're of course wondering: what happens when we finally execute the
EXIT in DINNER. Whose return address is on the return stack? What do we
return to?

Well, remember that DINNER has just been executed by EXECUTE, which is a component of INTERPRET. INTERPRET is a loop which checks the entire
input stream. Assuming that we entered after DINNER, then there is nothing more to interpret. So when we exit INTERPRET, where does that leave us?

In the outermost definition of each terminal, called QUIT.

QUIT, in simplified form, looks like this:

 : QUIT BEGIN (clear return stack)
 (accept input)
 INTERPRET
 ." ok " CR
 AGAIN ;

(The parenthetical comments represent words and phrases not yet covered.) We can see that after the word INTERPRET comes a dot-quote message, "ok,"
and a CR, which of course are what we see after interpretation has been completed.

Next is the phrase

 AGAIN

http://www.amresearch.com/starting_forth/sf9/sf9.html (11 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

which unconditionally returns us to the beginning of the loop, where we clear the return stack and once again wait for input.

If we execute QUIT at any level of execution, we will immediately cease execution of our application and re-enter QUIT's loop. The returnstack will be
cleared (regardless of how many levels of return addresses we had there, since we could never use any of them now) and the system will wait for input. You
can see why QUIT can be used to keep the message "ok" from appearing at our terminal.

The definition of ABORT" uses QUIT.

Abandoning the Nest

It's possible to include EXIT in the middle of a definition. For example, if we were to redefine ENTREE as follows:

 : ENTREE CHICKEN EXIT RICE ;

then when we subsequently execute DINNER, we will exit right after CHICKEN and return to the next course after the ENTREE, i.e., DESSERT.

EXIT is commonly used to exit from deeply nested conditional structures.

EXIT (--) When compiled within a colon definition, terminates execution at that point.

QUIT (--) Clears all stacks and returns control to the terminal. No message is given.

Forth Geography

This is the memory map of a typical Forth system:

http://www.amresearch.com/starting_forth/sf9/sf9.html (12 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

System Variables

This section of memory contains "system variables" which are created by the basic Forth
core and used by the entire system. They are not generally used by the user.

User Dictionary

The dictionary will grow into higher memory as you add your own definitions. The next
available cell in the dictionary at any time is pointed to by a variable called CP. During
the process of compilation, the pointer CP is adjusted cell-by-cell as the entry is being
added to the dictionary. Thus CP is the compiler's bookmark; it points to the place in the
dictionary where the compiler can next compile.

CP is also used by the word ALLOT, which advances CP by the number of bytes given.
For example, the phrase

 5 CELLS ALLOT

adds twenty to CP so that the compiler will leave room in the dictionary for a five-cell
array.

A related word is HERE, which is simply defined as

 : HERE CP @ ;

to put the value of CP on the stack. The word , (comma), which stores a single-length value into the next available cell in the dictionary, is simply defined

 : , HERE ! CELL ALLOT ;

that is, it stores a value into HERE and advances the dictionary pointer one cell to leave room for it.

You can use HERE to determine how much memory any part of your application requires, simply by comparing the HERE from before with the HERE after
compilation. For example,

 HERE S" random.frt" INCLUDED HERE SWAP - . 196 ok

http://www.amresearch.com/starting_forth/sf9/sf9.html (13 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

indicates that the definitions loaded by the file random.frt filled 196 bytes of memory space in the dictionary.

The Pad

At a certain distance from HERE in your dictionary, you will find a small region of memory called the "pad." Like a scratch pad, it is usually used to hold
ASCII character strings that are being manipulated prior to being sent out to a terminal. For example, the number formatting words use the pad to hold the
ASCII numerals during the conversion process, prior to TYPE.

The size of the pad is indefinite. In most systems there are hundreds of kilobytes between the beginning of the pad and the top of the parameter stack.

Since the pad's beginning address is defined relative to the last dictionary entry, it moves every time you add a new definition or execute FORGET or
MARKER. This arrangement proves safe, however, because the pad is never used when any of these events are occurring. The word PAD returns the current
address of the beginning of the pad. It is defined simply:

 : PAD HERE 340 + ;

that is, it returns an address that is a fixed number of bytes beyond HERE. (The actual number varies.)

Parameter Stack

Far above the pad in memory is the area reserved for the parameter stack. Although we like to imagine that values actually move up or down somewhere as
we "pop them off" and "push them on," in reality nothing moves. The only thing that changes is a pointer to the "top" of the stack.

As you can see below, when we "put a number on the stack," what really happens is that the pointer is "decremented" (so that it points to the next available
location towards low memory), then our number is stored where the pointer is pointing. When we "remove a number from the stack," the number is fetched
from the location where the pointer is pointing, then the pointer is incremented. Any numbers above the stack pointer on our map are meaningless.

http://www.amresearch.com/starting_forth/sf9/sf9.html (14 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

As new values are added to the stack, it "grows towards low memory."

The stack pointer is fetched with the word SP@ (pronounced s-p-fetch). Since SP@ provides the address of the top stack location, the phrase

 SP@ @

fetches the contents of the top of stack. This operation, of course, is identical to that of DUP. If we had five values on the stack, we could copy the fifth one
down with the phrase

 SP@ 4 CELLS + @

(but this is not considered good programming practice).

The bottom of the stack is pointed to by a variable called SP0 (s-p-zero). SP0 always contains the address of the next cell below the "empty stack" cell.

Notice that with double-length numbers, the high-order cell is stored at the lower memory address whether on the stack or in the dictionary. The operators
2@ and 2! keep the order of the cells consistent.

Input Message Buffer

http://www.amresearch.com/starting_forth/sf9/sf9.html (15 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

TIB contains the starting address for the "input message buffer," or "Terminal Input Buffer," which grows towards high memory (the same direction as the
pad). When you enter text from the terminal, it gets stored into this buffer where the text interpreter will scan it.

Return Stack

Above the buffer resides the return stack, which operates identically to the parameter stack. There are no high-level Forth words analogous to SP0 and SP@
that refer to the return stack.

User Variables

The next section of memory contains "user variables." These variables include BASE, SP0, and many others that we'll cover in an upcoming section.

This completes our journey across the memory map of a typical Forth system. Here are the words we've just covered that relate to memory regions in the
Forth system:

HERE (-- addr) Returns the next available dictionary location.

PAD (-- addr) Returns the beginning address of a scratchpad area used to hold character strings for intermediate processing.

SP@ (-- addr) User variable. Return the address of the top of the stack before SP@ is executed.

SP0 (-- addr) User variable. Contains the address of the bottom of the parameter stack.

User Variables

The following list shows most of the user variables. Some we won't ever mention again. Don't try to memorize this table. Just remember where you can find
it.

TIB Contains the address of the start of the terminal input buffer.

http://www.amresearch.com/starting_forth/sf9/sf9.html (16 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

#TIB Contains the size of the terminal input buffer.

SCR A pointer to the current block number (set by LIST).

BASE Number conversion base.

CP Dictionary pointer. Pointer to the next available byte.

>IN A pointer to the current position in the input stream.

BLK If non-zero, a pointer to the block being interpreted by LOAD. A zero indicates interpretation from the terminal (via the input message buffer).

User variables are not like ordinary variables. With an ordinary variable (one defined by the word VARIABLE), the value is kept in the body of the
dictionary entry. Each user variable, on the other hand, is kept in an array called the "user table." The dictionary entry for each user variable is located
elsewhere; its body contains an offset into the user table. When you execute the name of a user variable, such as CP, this offset is added to the beginning
address of the user table, allowing you to use @ or ! in the normal way.

The main advantage of user variables is that any number of tasks can use the same definition of a variable and each get its own value (because each task has
not only its own stacks, but also its own user table). Each task that executes

 BASE @

gets the value for BASE from its own user table. This saves a lot of room in the system while still allowing each task to execute independently.

User variables are defined by the word USER. The sequence of user variables in the table and their offset values vary from one system to another.

To summarize, there are three kinds of variables: System variables contain values used by the entire Forth system. User variables contain values that are
unique for each task, even though the definitions can be used by all tasks in the system. Regular variables can be accessible either system-wide or within a
single task only.

Here's a list of the Forth words we've covered in this chapter:

http://www.amresearch.com/starting_forth/sf9/sf9.html (17 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

' xxx (-- addr) Attempts to find the execution token of xxx (the word that follows in the input stream) in the dictionary.

[']

compile time
(--)
run time
(-- addr)

Used only in a colon definition, compiles the execution token of the next word in the definition as a literal.

EXECUTE (xt --) Executes the dictionary entry whose execution token is on the stack.

EXIT (--) When compiled within a colon definition, terminates execution at that point.

QUIT (--) Clears all stacks and returns control to the terminal. No message is given.

HERE (-- addr) Returns the next available dictionary location.

PAD (-- addr) Returns the beginning address of a scratchpad area used to hold character strings for intermediate processing.

SCR (-- addr) User variable. A pointer to the current block number (set by LIST).

BASE (-- addr) User variable. Number conversion base.

SP@ (-- addr) User variable. Return the address of the top of the stack before SP@ is executed.

TIB (-- addr) User variable. Contains the address of the start of the terminal input buffer.

#TIB (-- addr) User variable. Contains the size of the terminal input buffer.

SP0 (-- addr) User variable. Contains the address of the bottom of the parameter stack.

>IN (-- addr) User variable. A pointer to the current position in the input stream.

BLK (-- addr)
User variable. If non-zero, a pointer to the block being interpreted by LOAD. A zero indicates interpretation from the terminal
(via the input message buffer).

http://www.amresearch.com/starting_forth/sf9/sf9.html (18 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

Review of Terms

Address interpreter
The second of Forth's two interpreters, the one which executes the data (list of addresses, list of calls, machine code, ...) found in the
dictionary entry of a colon definition. The address interpreter also handles the nesting of execution levels for words within words.

Body the code and data field of a Forth dictionary entry.

Cfa code field address; the address of a dictionary entry's code pointer field.

Code pointer field
the cell in a dictionary entry which somehow points out the xt of the run-time code for this particular type of definition. For example,
in a dictionary entry compiled by :, the field would point out the address interpreter.

Defining word a Forth word which creates a dictionary entry. Examples include :, CONSTANT, VARIABLE, etc.

Head the name and link fields of a Forth dictionary entry.

Input message buffer
the region of memory within a terminal task that is used to store text as it arrives from the terminal. Incoming source text is interpreted
here.

Link field the cell in a dictionary entry which contains the address of the previous definition, used in searching the dictionary.

Name field the area of a dictionary entry which contains the name of the defined word, along with the number of characters in the name.

Pad the region of memory within a terminal task that is used as a scratch area to hold character strings for intermediate processing.

Data field
the area of a dictionary entry which contains the "contents" of a definition: for a CONSTANT, the value of the constant, for a
VARIABLE, the value of the variable; for a colon definition, the list of xts of words that are to be executed in turn when the definition
is executed.

Run-time code
a routine, compiled in memory, which specifies what happens when a member of a given class of words is executed. The run-time
code for a colon definition is the address interpreter; the run-time code for a variable pushes the address of the variable's body on the
stack.

System variable one of a set of variables provided by Forth, which are referred to system-wide (by any task). Contrast with "user variables.".

Task in Forth, a partition in memory that contains at minimum a parameter and a return stack and a set of user variables.

User variable one of a set of variables provided by Forth, whose values are unique for each task. Contrast with "system variables."

Vectored execution
the method of specifying code to be executed by providing not the address of the code itself, but the address of a location which
contains the xt of the code. This location is often called "the vector." As circumstances change within the system, the vector can be
reset to point to some other piece of code.

Problems -- Chapter 9
http://www.amresearch.com/starting_forth/sf9/sf9.html (19 sur 21) [05/03/2005 04:56:16]

http://www.amresearch.com/starting_forth/sf9/sf9.html

1. First review Chap. 2, Prob. 6. Without changing any of those definitions, write a word called COUNTS which will allow the judge to optionally enter
the number of counts for any crime. For instance, the entry

 CONVICTED-OF BOOKMAKING 3 COUNTS TAX-EVASION WILL-SERVE 17 years ok

will compute the sentence for one count of bookmaking and three counts of tax evasion. [answer]
2. What's the beginning address of your private dictionary? [answer]
3. In your system, how far is the pad from the top of your private dictionary? [answer]

4. Assuming that DATE has been defined by VARIABLE, what is the difference between these two phrases:

 DATE .

and

 ' DATE .

What is the difference between these two phrases:

 BASE .

and

 ' BASE .

[answer]
5. In this exercise you will create a "vectored execution array," that is, an array which contains xts of Forth words. You will also create an operation

http://www.amresearch.com/starting_forth/sf9/sf9.html (20 sur 21) [05/03/2005 04:56:16]

http://home.iae.nl/users/mhx/sf9/9-1.gfs
http://home.iae.nl/users/mhx/sf9/9-2.gfs
http://home.iae.nl/users/mhx/sf9/9-3.gfs
http://home.iae.nl/users/mhx/sf9/9-4.gfs

http://www.amresearch.com/starting_forth/sf9/sf9.html

word which will execute one word stored in the array when the operation word is executed.

Define a one-dimensional array of cells which will return the nth element's address when given a subscript n. Define several words which output
something at your terminal and take no inputs. Store the xts of these output words in various elements of the array. Store the address of a do-nothing
word in any remaining elements of the array. Define a word which will take a valid array index and execute the word whose address is stored in the
referenced element.

For example,

 1 DO-SOMETHING Hello, I speak Forth. ok
 2 DO-SOMETHING 1 2 3 4 5 6 7 8 9 10 ok
 3 DO-SOMETHING

 ********** ok
 4 DO-SOMETHING ok
 5 DO-SOMETHING ok
 [answer]

http://www.amresearch.com/starting_forth/sf9/sf9.html (21 sur 21) [05/03/2005 04:56:16]

http://home.iae.nl/users/mhx/sf9/9-5.gfs
http://validator.w3.org/

http://www.amresearch.com/starting_forth/sf10/sf10.html

10 I/O and You

In this chapter, we'll explain how Forth handles I/O of character strings to and from disk and the terminal.

Specifically, we'll discuss disk-access commands, output commands, string-manipulation commands, input commands, and number-input
conversion.

Output Operators

The word EMIT takes a single ASCII representation on the stack, using the low-order byte only, and prints the character at your terminal. For
example, in decimal:

 65 EMIT A ok
 66 EMIT B ok

The word TYPE prints an entire string of characters at your terminal, given the starting address of the string in memory and the count, in this
form:

 (addr u --)

We've already seen TYPE in our number-formatting definitions without worrying about the address and count, because they are automatically
supplied by #>.

Let's give TYPE an address that we know contains a character string. Remember that the starting address of the terminal input buffer is
returned by TIB? Suppose we enter the following command:

 TIB #TIB @ TYPE

This will type 15 characters from the terminal input buffer, which contains the command we just entered:

 TIB #TIB @ TYPE TIB #TIB @ TYPE ok

Let's digress for a moment to look at the operation of .". At compile time, when the compiler encounters a dot-quote, it compiles the ensuing
string right into the dictionary, letter-by-letter, up to the delimiting double-quote. To keep track of things, it also compiles the count of
characters into the dictionary entry. Given the definition

 : TEST ." sample " ;

and looking at bytes in the dictionary horizontally rather than vertically, here is what the compiler has compiled:

If we wanted to, we could type the word "SAMPLE" ourselves (without executing TEST) with the phrase

 ' TEST >BODY CELL+ 1+ 7 TYPE

where

 ' TEST >BODY

gives us the body address of TEST,

 CELL+ 1+

offsets us past the address and the count, to the beginning of the string (the letter "s"), and

http://www.amresearch.com/starting_forth/sf10/sf10.html (1 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

 7 TYPE

types the string "sample." (This will actually work with Gforth-fast.exe, vsn 0.5.0).

That little exercise may not seem too useful. But let's go a step further.

Remember how we defined LABEL in our egg-sizing application, using nested IF...THEN statements? We can rework our definition using
TYPE. First let's make all the labels the same length and "string them together" within a single definition as a string array. (We can abbreviate
the longest label to "XTRA LRG" so that we can make each label eight characters long, including trailing spaces.)

 : "LABEL" ." REJECT SMALL MEDIUM LARGE XTRA LRGERROR " ;

Once we enter

 ' "LABEL" >BODY CELL+ 1+

to get the address of the start of the string, we can type any particular label by offsetting into the array. For example, if we want label 2, we
simply add sixteen (2 x 8) to the starting address and type the eight characters of the name:

 16 + 8 TYPE

Now let's redefine LABEL so that it takes a category-number from zero through five and uses it to index into the string array, like this:

 : LABEL 8 * ['] "LABEL" >BODY CELL+ 1+ + 8 TYPE SPACE ;

Recall that the word ['] is just like ' except that it may only be used inside a definition to compile the address of the next word in the definition
(in this case, "LABEL"). Later, when we execute LABEL, bracket-tick-bracket followed by to-body will push the body address of "LABEL"
onto the stack. The number corresponding to CELL+ 1+ is added, then the string offset is added to compute the address of the particular label
name that we want.

This kind of string array is sometimes called a "superstring." As a naming convention, the name of the superstring usually has quotes around
it. Note that this method is in practice never used, as the same result can be had with the completely portable ANS Forth word C", as follows:

 : "LABEL" C" REJECT SMALL MEDIUM LARGE XTRA LRGERROR " ;
 : LABEL 8 * "LABEL" 1+ + 8 TYPE SPACE ;

Our new version of LABEL will run a little faster because it does not have to perform a series of comparison tests before it hits upon the
number that matches the argument. Instead it uses the argument to compute the address of the appropriate string to be typed.

Notice, though, that if the argument to LABEL exceeds the range zero through five, you'll get garbage. If LABEL is only going to be used
within EGGSIZE in the application, there's no problem. But if an "end user," meaning a person, is going to use it, you'd better "clip" the
index, like this:

 : LABEL 0 MAX 5 MIN LABEL ;

TYPE (addr u --) Transmits u characters, beginning at address, to the current output device.

Outputting Strings from Disk

We mentioned before that the word BLOCK copies a given block into an available buffer and leaves the address of the buffer on the stack.
Using this address as a starting-point, we can index into one of the buffer's 1,024 bytes and type any string we care to. For example, to print
line 0 of block 1, we could say (assuming you've executed USE blocks.gfb)

 CR 1 BLOCK 64 TYPE

 ok

To print line eight, we could add 512 (8 x 64) to the address, like this:

 CR 1 BLOCK 512 + 64 TYPE

http://www.amresearch.com/starting_forth/sf10/sf10.html (2 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

Before we give a more interesting example, it's time to introduce a word that is closely associated with TYPE.

-TRAILING (addr u1 -- addr u2)
Eliminates trailing blanks from the string that starts at the address by reducing the count from u1
(original byte count) to u2 (shortened byte count).

Handy Hint

A Random Number Generator

This simple random number generator can be useful for games, although for
more sophisticated applications such as simulations, better versions are
available.

 (Random number generation -- High level)
 VARIABLE rnd HERE rnd !
 : RANDOM rnd @ 31421 * 6927 + DUP rnd ! ;
 : CHOOSE (u1 -- u2) RANDOM UM* NIP ;

 (where CHOOSE returns a random integer
 within the range 0 = or < u2 < u1.)

Here's how to use it:

To choose a random number between zero and ten (but exclusive of ten)
simply enter

 10 CHOOSE

and CHOOSE will leave the random number on the stack.

-TRAILING can be used immediately before the TYPE
command so that trailing blanks will not be printed. For
instance, inserting it into our first example above would give
us

 CR 1 BLOCK 64

 -TRAILING TYPE

 ok

The following example uses TYPE

 USE blocks.gfb
 : POOF
 16 CHOOSE 64 *
 2 BLOCK +
 CR 64 -TRAILING
 TYPE ;

try it:

 POOF
 qualified ok
 POOF
 flexible ok
 POOF
 total ok

Internal String Operators

The commands for moving character strings or data arrays are very simple. Each requires three arguments: a source address, a destination
address, and a count.

CMOVE (addr1 addr2 u --)
Copies a region of memory u bytes long, byte-by-byte beginning at addr1, to memory beginning at addr2.
The move begins with the contents of addr1 and proceeds toward high memory.

CMOVE> (addr1 addr2 u --)
If u is greater than zero, copy u consecutive characters from the data space starting at c-addr1 to that
starting at c-addr2, proceeding character-by-character from higher addresses to lower addresses.

MOVE (addr1 addr2 u --)
After this move, the u bytes at addr2 contain exactly what the u bytes at addr1 contained before the move
(no "clobbering" occurs).

Notice that these commands follow certain conventions we've seen before:

1. When the arguments include a source and a destination, the source precedes the destination.
2. When the arguments include an address and a count (as they do with TYPE), the address precedes the count.

And so with these three words the arguments are

 (source destination count --)

To move the entire contents of a buffer into the PAD, for example, we would write

 210 BLOCK PAD 1024 CMOVE

although on cell-address machines the move might be made faster if it were cell-by-cell, like this:

http://www.amresearch.com/starting_forth/sf10/sf10.html (3 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

 210 BLOCK PAD 1024 MOVE

The word CMOVE> lets you move a string to a region that is higher in memory but that overlaps the source region.

If you were to use CMOVE, the first letter of the string would get copied to the
second byte, but that would "clobber" the second letter of the string. The final result
would be a string composed of a single character.

Using CMOVE> in this situation keeps the string from clobbering itself during the
move.

You probably notice that CMOVE can be used to fill an array with a certain byte. On
older systems the word FILL, which we introduced earlier, may have been defined
using this trick. On modern Forths it is recommended to explicitly use FILL, if fill is
what you want to do. For example, to store blanks into 1024 bytes of the pad, we say

 PAD 1024 CHAR BL FILL

Single-character Input

The word KEY awaits the entry of a single key from your terminal keyboard and leaves the character's ASCII equivalent on the stack in the
low-order byte.

To execute it directly, you must follow it with a return, like this:

 KEY

The cursor will advance a space, but the terminal will not print the "ok"; it is waiting for your input. Press the letter "A," for example, and the
screen will "echo" the letter "A," followed by the "ok." The ASCII value is now on the stack, so enter .:

 KEY A ok

 . 65 ok

This saves you from having to look in the table to determine a character's ASCII code.

You can also include KEY inside a definition. Execution of the definition will stop, when KEY is encountered, until an input character is
received. For example, the following definition will list a given number of blocks in series, starting with the current block, and wait for you to
press any key before it lists the next one:

 : BLOCKS (count --)
 SCR @ + SCR @ DO I LIST KEY DROP LOOP ;

In this case we drop the value left by KEY because we don't care what it is.

Or we might add a feature that allows us either to leave the loop at any time by pressing return or to continue by pressing any other key, such
as as space. In this case we will perform a conditional test on the value returned by KEY.

 13 CONSTANT #EOL
 : BLOCKS (count --)
 SCR @ +
 SCR @ DO I LIST
 KEY #EOL = (cr) IF LEAVE THEN
 LOOP ;

Note that in some Forth systems, the carriage-return key is received as a linefeed (10) or as a null (zero).

KEY (-- c) Returns the ASCII value of the next available character from the current input device.

http://www.amresearch.com/starting_forth/sf10/sf10.html (4 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

String Input Commands, from the Bottom up

There are several words involved with string input. We'll start with the lower-level of these and proceed to some higher-level words. Here are
the words we will cover in this section:

ACCEPT (c-addr u1 -- u2)
Receives u characters (or a carriage return) from the terminal keyboard and stores them, starting at the
address. The count of received characters is returned.

WORD (c -- addr)
Reads one word from the input stream, using the character (usually blank) as a delimiter. Moves the string
to the address (HERE) with the count in the first byte, leaving the address on the stack.

The word ACCEPT stops execution of the task and waits for input from your keyboard. It expects a given number of keystrokes or a carriage
return, whichever comes first. The incoming text is stored beginning at the address given as an argument, the count of received characters is
returned on the stack.

For example, the phrase

 TIB 80 ACCEPT

will await up to eighty characters and store them in the Terminal Input Buffer (TIB). (Storing directly in the TIB is not standard, but Gforth
and iForth have no problem with this tradition.)

This phrase is the one used in the definition of QUIT to get the input for INTERPRET.

Let's move on to the next higher-level string-input operator. We've just explained that QUIT contains the phrase

 ... TIB 80 ACCEPT #TIB ! INTERPRET ...

but how does the text interpreter scan the terminal input buffer and pick out each individual word there? With the phrase

 BL WORD

WORD scans the input stream looking for the given delimiter, in this case space, and moves the sub-string into a different buffer of its own,
with the count in the first byte of the buffer. Finally, it leaves the address of the buffer on the stack, so that INTERPRET (or anyone else)
knows where to find it. WORD's buffer usually begins at HERE, so the address given is HERE.

WORD looks for the given delimiter in the terminal input buffer, and moves the sub-string to WORD's buffer with the count in the first byte.

When you are executing words directly from a terminal, WORD will scan the input buffer, starting at TIB. As it goes along, it advances the
input buffer pointer, called >IN, so that each time you execute WORD, you scan the next word in the input stream. WORD knows to stop
scanning when >IN @ becomes larger than #TIB @, the count of received characters.

>IN is a "relative pointer"; that is, it does not contain the actual address but rather an offset that is to be added to the actual address, which is is
in this case TIB. For example, after WORD has scanned the string "STAR," the value of >IN is five.

WORD ignores initial occurences of the delimiter (until any other character is encountered). You could type

 •••••STAR

http://www.amresearch.com/starting_forth/sf10/sf10.html (5 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

(that is, STAR preceded by several spaces) and get exactly the same string in WORD's buffer as shown above.

We'll get back to WORD later on in this chapter. For now, though, let's define a word that uses WORD and that is more useful for handling
string input:

 : TEXT (delimiter --) PAD 258 BL FILL WORD COUNT PAD SWAP MOVE ;

TEXT, like WORD, takes a delimiter and scans the input stream until it finds the string delimited by it. It then moves the string to the pad.
What is especially nice about TEXT is that before it moves the string, it blanks the pad. This makes it very convenient for use with TYPE.
Here's a simple example:

 CREATE my-name 40 ALLOT
 : I'M BL TEXT PAD my-name 40 MOVE ;

In the first line we define an array called my-name. In the second line we define a word called I'M which will allow us to enter

 I'M EDWARD ok

The definition of I'M breaks down as follows: the phrase

 BL TEXT

scans the remainder of the input stream looking for a space or the end of the line, whichever comes first. (The delimiter that we give to TEXT
is actually used by WORD, which is included in the definition of TEXT.) TEXT then moves the phrase to a nice clean "pad."

The phrase

 PAD my-name 40 MOVE

moves forty bytes from the pad into the array called my-name, where it will safely stay for as long as we need it.

We could now define GREET as follows:

 : GREET ." Hello, " my-name 40 -TRAILING TYPE ." , I speak Forth. " ;

so that by executing GREET, we get

 GREET Hello, EDWARD, I speak Forth. ok

Unfortunately, our definition of I'M is looking for a space as its delimiter. This means that a person named Mary Kay will not get her full
name into my-name.

To get the complete input stream, we don't want to "see" any delimiter at all, except the end of line. Instead of "BL TEXT," we should use
the phrase

 1 TEXT

ASCII 1 is a control character that can't be ever sent from the keyboard and therefore won't ever appear in the input buffer. Thus "1 TEXT"
is a convention used to read the entire input buffer, up to the carriage return. By redefining I'M in this way, Mary Kay can get her name into
my-name, space and all.

By using other delimiters, such as commas, we can "accept" a series of strings and store each of them into a different array for different
purposes. Consider this example, in which the word VITALS uses commas as delimiters to separate three input fields:

 (Form love letter)

 CREATE name 14 ALLOT
 CREATE eyes 12 ALLOT
 CREATE me 14 ALLOT

 : VITALS

http://www.amresearch.com/starting_forth/sf10/sf10.html (6 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

 [CHAR] , TEXT PAD name 14 MOVE
 [CHAR] , TEXT PAD eyes 12 MOVE
 1 TEXT PAD me 14 MOVE ;

 : LETTER PAGE
 ." Dear " name 14 -TRAILING TYPE ." ,"
 CR ." I go to heaven whenever I see your deep "
 eyes 12 -TRAILING TYPE ." eyes. Can "
 CR ." you go to the movies Friday? "
 CR 30 SPACES ." Love, "
 CR 30 SPACES me 14 -TRAILING TYPE
 CR ." P.S. Wear something " eyes 12 -TRAILING TYPE
 ." to show off those eyes! " ;

Which allows you to enter

 VITALS Alice,blue,Fred ok

then enter

 LETTER

It works every time.

So far all of our input has been "Forth style"; that is, numbers precede commands (so that a command will find its number on the stack) and
strings follow commands (so that a command will find its string in the input stream). This style makes use of one of Forth's unique features: it
awaits your commands; it does not prompt you.

But if you want to, you may put ACCEPT inside a definition so that it will request input from you under control of the definition. For
example, we could combine the two words I'M and GREET into a single word which "prompts" users to enter their names. For example,

 GREET
 What's your name?

at which point execution stops so the user can enter a name:

 GREET
 What's your name? Travis Mc Gee
 Hello, Travis Mc Gee, I speak Forth. ok

We could do this as follows:

 : GREET CR ." What's your name?"
 TIB 40 ACCEPT #TIB ! 0 >IN !
 1 TEXT CR ." Hello, "
 PAD 40 -TRAILING TYPE ." , I speak Forth. " ;

We've explained all the phrases in the above definition except this one:

 #TIB ! 0 >IN !

Remember that TEXT, because it uses WORD, always uses >IN as its reference point. But when the user enters the word GREET to execute
this definition, the string GREET will be stored in the terminal input buffer and >IN will be pointing beyond "GREET". ACCEPT does not
use >IN as its reference, so it will store the user's name beginning at TIB, on top of GREET. If you were to execute TEXT now, it would miss
the first five letters of the user's name. It's necessary to reset >IN to zero so that TEXT will look where ACCEPT has put the name.

Number Input Conversion

When you type a number at your terminal, Forth automatically converts this character string into a binary value and pushes it onto the stack.
Forth also provides a command which let you convert a character string that begins at any memory location into a binary value.

http://www.amresearch.com/starting_forth/sf10/sf10.html (7 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

>NUMBER
(ud1 c-addr1 u1 --
ud2 c-addr2 u2)

ud2 is the unsigned result of converting the characters within the string specified by c-addr1 u1 into
digits, using the number in BASE, and adding each into ud1 after multiplying ud1 by the number in
BASE. Conversion continues left-to-right until a character that is not convertible, including any "+" or "-
", is encountered or the string is entirely converted. c-addr2 is the location of the first unconverted
character or the first character past the end of the string if the string was entirely converted. u2 is the
number of unconverted characters in the string.

Here's an example that uses >NUMBER:

 : PLUS 0. BL WORD COUNT >NUMBER 2DROP DROP + ." = " . ;

PLUS allows us to prove to any skeptic that Forth could use infix notation if it wanted to. We can enter

 2 PLUS 13 = 15 ok

When PLUS is executed, the "2" will be put on the stack in binary form, while the "3" will still be in the input stream as a string. The phrase

 0. BL WORD

reads the string and provides the accumulator for >NUMBER; >NUMBER converts it to binary and puts the double-length result plus an
unconverted string on the stack. We drop the string and the top half of the double-length result. Now + adds the two single-length values and .
prints the result.

Note that you can use >NUMBER to create your own specialized number input conversion routines. Since >NUMBER returns the address of
the first unconvertible character, you can make decisions based on whether the character is a hyphen, dot, or whatever. You can also make
decisions based on the location of the non-convertible character within the number. For instance, you can write a routine that lets you enter a
number with a decimal point in it and then scales it accordingly.

To give a good example of the use of >NUMBER, Figure 10-1 shows a definition of NUMBER. This version reads any of the characters

 : , - . /

as valid punctuation marks which cause the value to be returned on the stack as a double-length integer. If none of these characters appear in

the string, the value is returned as single-length. This definition uses the word WITHIN as we defined it in the problems for Chap. 4.

Here we use the variable PUNCT to contain a flag that indicates whether punctuation was encountered. We suggest that you use an available
user variable instead.

Figure 10-1. A Definition of NUMBER

VARIABLE punct Creates a flag that will contain true if the number
contains valid punctuation.

 : NUMBER (addr u -- n or d)

 0 punct !
Initialize flag, no punctuation has occured.

 OVER C@
Get the first digit.

 [CHAR] - =
Is it a minus sign?

 DUP >R
Save the flag on the return stack.

 IF 1 /STRING THEN
If the first character is "-", adds 1 to the address and
decrements the character count. This effectively
skips the "-" character, pointing to the real first
digit.

 0. 2SWAP
provides the double-length zero as an accumulator.

http://www.amresearch.com/starting_forth/sf10/sf10.html (8 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

 BEGIN

 >NUMBER
Begins conversion; converts until an invalid digit.

 DUP While there are still characters left, fetch the invalid
digit.

 WHILE

 OVER C@ DUP [CHAR] : =
 a colon, or

 SWAP [CHAR] , [CHAR] / 1+ WITHIN OR
 a comma, hyphen, period or slash.

 DUP punct ! Set punct to indicate whether valid punctuation
has occurred.

 0= ABORT" ? "
Otherwise issue an error message.

 1 /STRING
Skip the punctuation character.

 REPEAT Exits here if a blank is detected; otherwise repeats
conversion.

 2DROP
Drop the string from the stack.

 R> IF DNEGATE THEN
If the flag on the return stack is true, negates d.

 punct @ 0= IF DROP THEN ; If there was no punctuation, returns a single-length
value by dropping the high-order cell.

A Closer Look at WORD

So far we have only talked about using WORD to scan the terminal input buffer (which holds the characters that are ACCEPTed from the
terminal). But if we recall that the phrase

 BL WORD

is used by the text interpreter, we realize that WORD actually scans the input stream, which is either the terminal input buffer, a string being
EVALUATEd, or disk memory being LOADed or INCLUDED.

To achieve this flexibility, WORD uses other pointers in addition to >IN. The other pointers make sure WORD looks in memory (when doing
EVALUATE), on disk (when doing LOAD or INCLUDED) or in the terminal input buffer.

A useful word to use in conjunction with WORD is COUNT. Recall that WORD leaves the length of the word in the first byte of WORD's
buffer and also leaves the address of this byte on the stack.

The word COUNT puts the count on the stack and increments the address, like this:

leaving the stack with a string address and a count as appropriate arguments for TYPE, MOVE, etc.

http://www.amresearch.com/starting_forth/sf10/sf10.html (9 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

COUNT is used in the definition of TEXT which we gave a few sections back.

COUNT (addr -- addr+1 u)
Converts a character string, whose length is contained in its first byte, into the form appropriate for TYPE,
by leaving the address of the first character and the length on the stack.

We will further illustrate the use of WORD in one of the examples in Chap. 12.

String Comparisons

Here is a Forth word that you can use to compare character strings:

COMPARE
(c-addr1 u1
 c-addr2 u2 -- n)

Compare the string specified by c-addr1 and u1 to the string specified by c-addr2 and u2. The strings are
compared, beginning at the given addresses, character by character up to the length of the shorter string,
or until a difference is found. If both strings are the same up to the length of the shorter string, then the
longer string is greater than the shorter string. n is -1 if the string specified by c-addr1 and u1 is less than
the string specified by c-addr2 and u2. n is zero if the strings are equal. n is 1 if the string specified by c-
addr1 and u1 is greater than the string specified by c-addr2 and u2.

COMPARE can be used to test whether two character strings are equal or whether one is alphabetically greater or lesser than the other.

Here's a list of the Forth words we've covered in this chapter:

TYPE (addr u --) Transmits u characters, beginning at address, to the current output device.

-TRAILING (addr u1 -- addr u2)
Eliminates trailing blanks from the string that starts at the address by reducing the count from u1
(original byte count) to u2 (shortened byte count).

MOVE (addr1 addr2 u --)
After this move, the u bytes at addr2 contain exactly what the u bytes at addr1 contained before the
move (no "clobbering" occurs).

CMOVE (addr1 addr2 u --)
Copies a region of memory u bytes long, byte-by-byte beginning at addr1, to memory beginning at
addr2. The move begins with the contents of addr1 and proceeds toward high memory.

KEY (-- c) Returns the ASCII value of the next available character from the current input device.

ACCEPT (c-addr u1 -- u2)
Receives u characters (or a carriage return) from the terminal keyboard and stores them, starting at
the address. The count of received characters is returned.

WORD (c -- addr)
Reads one word from the input stream, using the character (usually blank) as a delimiter. Moves
the string to the address (HERE) with the count in the first byte, leaving the address on the stack.

>NUMBER
(ud1 c-addr1 u1 --
 ud2 c-addr2 u2)

ud2 is the unsigned result of converting the characters within the string specified by c-addr1 u1
into digits, using the number in BASE, and adding each into ud1 after multiplying ud1 by the
number in BASE. Conversion continues left-to-right until a character that is not convertible,
including any "+" or "-", is encountered or the string is entirely converted. c-addr2 is the location
of the first unconverted character or the first character past the end of the string if the string was
entirely converted. u2 is the number of unconverted characters in the string.

COUNT (addr -- addr+1 u)
Converts a character string, whose length is contained in its first byte, into the form appropriate for
TYPE, by leaving the address of the first character and the length on the stack.

CMOVE> (addr1 addr2 u --)
If u is greater than zero, copy u consecutive characters from the data space starting at c-addr1 to
that starting at c-addr2, proceeding character-by-character from higher addresses to lower
addresses.

COMPARE
(c-addr1 u1
 c-addr2 u2 -- n)

Compare the string specified by c-addr1 and u1 to the string specified by c-addr2 and u2. The
strings are compared, beginning at the given addresses, character by character up to the length of
the shorter string, or until a difference is found. If both strings are the same up to the length of the
shorter string, then the longer string is greater than the shorter string. n is -1 if the string specified
by c-addr1 and u1 is less than the string specified by c-addr2 and u2. n is zero if the strings are
equal. n is 1 if the string specified by c-addr1 and u1 is greater than the string specified by c-addr2
and u2.

BLANK (addr u --) Store ASCII blanks into u bytes of memory, beginning at addr.

http://www.amresearch.com/starting_forth/sf10/sf10.html (10 sur 12) [05/03/2005 04:56:36]

http://www.amresearch.com/starting_forth/sf10/sf10.html

Review of Terms

Relative pointer A variable which specifies a location in relation to the beginning of an array or string--not the absolute address.

Superstring in Forth, a character array which contains a number of strings. Any one string may be accessed by indexing into the array.

Virtual memory
the treatment of mass storage (such as the disk) as though it were resident memory; also the mechanism of the operating
system which makes this treatment possible.

Problems -- Chapter 10

1. Enter some famous quotations into an available block, say 3. Now define a word called CHANGE which takes two ASCII values and
changes all occurrences within block 3 of the first character into the second character. For example,

 CHAR A CHAR E CHANGE

will change all the "A"s into "E"s. [answer]
2. Define a word called FORTUNE which will print a prediction at your terminal, such as "You will receive good news in the mail." The

prediction should be chosen at random from a list of sixteen or fewer predictions. Each prediction is sixty-four characters, or less, long.
[answer]

3. According to Oriental legend, Buddha endows all persons born in each year with special, helpful characteristics represented by one of
twelve animals. A different animal reigns over each year, and every twelve years the cycle repeats itself. For instance, persons born in
1900 are said to be born in the "Year of the Rat." The art of fortune-telling based on these influences of the natal year is called
"Juneeshee."

Here is the order of the cycle:

 Rat Ox Tiger Rabbit Dragon Snake Horse Ram Monkey Cock Dog Boar

Write a word called .ANIMAL that types the name of the animal corresponding to its position in the cycle as listed here; e.g.,

 0 .ANIMAL RAT ok

Now write a word called (JUNEESHEE) which takes as an argument a year of birth and prints the name of the associated animal.
(1900 is the year of the Rat, 1901 is the Ox, etc.)

Finally, write a word called JUNEESHEE which prompts the user for his/her year of birth and prints the name of the person's
Juneeshee animal. Define it so that the user won't have to press "return" after entering the year. [answer]

4. Rewrite the definition of LETTER that appears in this chapter so that it uses names and personal descriptions that have been edited into
a block, rather than entered into character arrays. In this way, you can keep a file on many "prospects" and produce a letter for any one
person with the appropriate descriptions, just by supplying an argument to LETTER, as in

 1 LETTER

Now define LETTERS so that it prints one letter for each person in your file.
5. In this exercise you will create and use a virtual array, that is, an array which resides on disk but which is referenced like a memory-

resident array (with @ and !).

First select an unused block. Put this block number in a variable. Then define an access word which accepts a cell subscript from the
stack, then computes the block number corresponding to this subscript, calls BLOCK and returns the memory address of the
subscripted cell. This access word should also call UPDATE. Test your work sofar.

http://www.amresearch.com/starting_forth/sf10/sf10.html (11 sur 12) [05/03/2005 04:56:36]

http://home.iae.nl/users/mhx/sf10/10-1.gfs
http://home.iae.nl/users/mhx/sf10/10-2.gfs
http://home.iae.nl/users/mhx/sf10/10-3.gfs

http://www.amresearch.com/starting_forth/sf10/sf10.html

Next use the first cell as a count of how many data items are stored in the array. Define a word PUT which will store a value into the
next available cell of the array. Define a display routine which will print the stored elements in the array.

Now use this virtual array facility to define a word ENTER which will accept pairs of numbers and store them in the array.

Finally, define TABLE to print the data entered above, eight members per line. [answer]

http://www.amresearch.com/starting_forth/sf10/sf10.html (12 sur 12) [05/03/2005 04:56:36]

http://home.iae.nl/users/mhx/sf10/10-5.gfs
http://validator.w3.org/

http://www.amresearch.com/starting_forth/sf11/sf11.html

11 Extending the compiler: Defining words
and Compiling words
In comparison with conventional languages, Forth's compiler is completely backwards. Traditional compilers are
huge programs designed to translate any foreseeable, legal combination of available operators into machine
language. In Forth, however, most of the work of compilation is done by a single definition, only a few lines
long. Special structures like conditionals and loops are not compiled by the compiler but by the words being
compiled (IF, DO, etc.)

Lest you scoff at Forth's simple ways, notice that Forth is unique among languages in the ease with which you
can extend the compiler. Defining new, specialized compilers is as easy as defining any other word, as you will
soon see.

When you've got an extensible compiler, you've got a very powerful language!

Just a question of time

Before we get fully into this chapter, let's review one particular concept that can be a problem to beginning Forth
programmers. It's a question of time.

We have used the term "run time" when referring to things that occur when a word is executed and "compile
time" when referring to things that happen when a word is compiled. So far so good. But things get a little
confusing when a single word has both a run-time and a compile-time behavior.

In general there are two classes of words which behave in both ways. For purposes of this discussion, we'll call
these two classes "defining words" and "compiling words."

A defining word is a a word which, when executed, compiles a new definition. A defining word specifies the
compile-time and run-time behavior of each member of the "family" of words that it defines. Using the defining
word CONSTANT as an example, when we say

 80 CONSTANT MARGIN

we are executing the compile-time behavior of CONSTANT; that is, CONSTANT is compiling a new constant-
type dictionary entry called MARGIN and storing the value 80 into its parameter field. But when we say

 MARGIN

we are executing the run-time behavior of CONSTANT; that is, CONSTANT is pushing the value 80 onto the
stack. We'll pursue defining words further in the next few sections.

The other type of word which possesses dual behavior is the "compiling word." A compiling word is a word that
we use inside a colon definition and that actually does something during compilation of that definition.

One example is the word .", which at compile time compiles a text string into the dictionary entry with the count

http://www.amresearch.com/starting_forth/sf11/sf11.html (1 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

in front, and at run time types it. Other examples are control-structure words like IF and LOOP, which also have
compile-time behaviors distinct from their run-time behaviors. We'll explore compiling words after we've
discussed defining words.

How to Define a Defining Word

Here are the standard Forth defining words we've covered so far:

 :
 VARIABLE
 2VARIABLE
 CONSTANT
 2CONSTANT
 CREATE

What do they all have in common? Each of them is used to define a set of words with similar compile-time and
run-time characteristics.

And how are all these defining words defined? First we'll answer this question metaphorically.

Let's say
you're in
the
ceramic
salt-

shaker business. If you plan to make enough salt shakers, you'll find it's easiest to make a mold first. A mold will
guarantee that all your shakers will be of the same design, while allowing you to make each shaker a different
color. In making the mold, you must consider two things:

1. How the mold will work. (E.g., how will you get the clay into and out of the mold without breaking the
mold or letting the seams show?)

2. How the shaker will work. (E.g., how many holes should there be? How much salt should it hold? Etc.)

To bring this analogy back to Forth, the definition of a defining word must specify two things: the compile-time
behavior and the run-time behavior for that type of word.

Hold that thought a moment while we look at the most basic of the defining words in the above list: CREATE. At
compile time, CREATE takes a name from the input stream and creates a dictionary heading for it.

7 E X A M P L E
At run time, CREATE pushes the body address of EXAMPLE onto the
stack.

What happens if we use CREATE inside a definition? Consider this
example, which is the definition for VARIABLE:

 : VARIABLE CREATE 0 , ;

http://www.amresearch.com/starting_forth/sf11/sf11.html (2 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

link

execution token

(body)

When we execute VARIABLE as in

 VARIABLE ORANGES

We are indirectly using CREATE to create a dictionary head with the
name ORANGES and an xt that points to CREATE's run-time code. Then

we are allotting a cell for the variable itself (with "0 ,").

Since the run-time behavior of a variable is identical to that of a word defined by CREATE, VARIABLE does
not need to have run-time code of its own, it can use CREATE's run-time code.

How do we specify a different run-time behavior in a defining word? By using the word DOES>, as shown here:

 : DEFINING-WORD CREATE (compile-time operations)
 DOES> (run-time operations) ;

To illustrate, the following could be a valid definition for CONSTANT (although in fact CONSTANT is usually
defined in machine code):

 : CONSTANT CREATE , DOES> @ ;

To see how this definition works, imagine we're using it to define a constant named TROMBONES, like this:

 76 CONSTANT TROMBONES

compile-time portion

CREATE Create a new dictionary entry (e.g., TROMBONES)

,
Compiles the value (e.g., 76) for the constant from the stack into the
constant's parameter field.

run-time portion

DOES>
Marks the end of the compile-time behavior and the beginning of the run-
time behavior. At run time, DOES> will leave the body address of the
word being defined on the stack.

@
Fetches the contents of the constant, using the body address that will be
on the stack at run time.

The words that precede DOES> specify what the mold will do; the words that follow DOES> specify what the
product of the mold will do.

http://www.amresearch.com/starting_forth/sf11/sf11.html (3 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

DOES>
run time:
(-- addr)

Used in creating a defining word; marks the end of its compile-time portion and the
beginning of its run-time portion. The run-time operations are stated in higher-level
Forth. At run time, the body address of the defined word will be on the stack.

Defining Words You Can define Yourself

Here are some examples of defining words that you can create yourself.

Recall that in our discussion of "String Input Commands" in Chap. 10, we gave an
example that employed character-string arrays called NAME, EYES, and ME. Every time
we used one of these names, we followed it with a character count. In the input
definition, we wrote

 ... PAD NAME 14 MOVE

and in the output definition we wrote

 ... NAME 14 -TRAILING TYPE ...

and so on.

Let's eliminate the count by creating a defining word called CHARACTERS, whose product definitions will leave
the address and count on the stack when executed.

We'll use it like this: if we say

 20 CHARACTERS ME

we will create an array called ME, with twenty characters available for the character string.

When we execute ME, we'll get the address of the array and the count on the stack. Now we can write

 PAD ME MOVE

instead of

 PAD ME 20 MOVE

or

 ME -TRAILING TYPE

instead of

 ME 20 -TRAILING TYPE

Here's how we might define CHARACTERS:

http://www.amresearch.com/starting_forth/sf11/sf11.html (4 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

: CHARACTERS

compile-time portion

CREATE Create a new dictionary entry (e.g., ME)

DUP , ALLOT
Compiles the count (e.g., twenty) into the first cell of the array
for future reference. Then allots an additional twenty bytes
beyond the count for the string.

run-time portion

DOES>
Marks the beginning of run-time code, leaving the body address of the
product-word on the stack at run-time.

DUP Copies the body address.

CELL+
Advances the address to point past the count, to the start of the character
string.

SWAP @
Swaps the string address with the count address and fetches the count.
The stack now holds (addr count --).

;

We have just extended our compiler! Our new word CHARACTERS is a defining word that creates a data
structure and procedure that we find useful. CHARACTERS not only simplifies our input and output definitions, it
also allows us to change the length of any string, should the need arise, in one place only (i.e., where we define
it).

Our next example could be useful in an application where a large number of byte (not CHAR!) arrays are needed.
Let's create a defining word called STRING as follows:

 : STRING CREATE ALLOT DOES> + ;

to be used in the form

 30 STRING VALVE

to create an array thirty bytes in length. To access any byte in this array, we merely say:

 6 VALVE C@

which would give us the current setting of hydraulic valve 6 at an oil-pumping station. At run time, VALVE will
add the argument 6 to the body address left by DOES>, producing the correct byte address.

If our application requires a large number of arrays to be initialized to zero, we might include the initialization in
an alternate defining word called 0STRING:

 : ERASED HERE OVER ERASE ALLOT ;

http://www.amresearch.com/starting_forth/sf11/sf11.html (5 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

 : 0STRING CREATE ERASED DOES> + ;

First we define ERASED to ERASE the given number of bytes, starting at HERE, before ALLOTing the given
number of bytes.

Then we simply substitute ERASED for ALLOT in our new version.

By changing the definition of a defining word, you can change the characteristics of all the member words of that
family. This ability makes program development much easier. For instance, you can incorporate certain kinds of
error checking while you are developing the program, then eliminate them after you are sure that the program
runs correctly.

Here is a version of STRING which, at run time, guarantees that the index into the array is valid:

 : STRING CREATE DUP , ALLOT
 DOES> 2DUP @ U< 0= ABORT" Range error " + CELL+ ;

which breaks down as follows:

DUP , ALLOT Compiles the count and allots the given number of bytes.

DOES> 2DUP @
At run time, given the argument on the stack, produces (arg pfa arg count --
).

U< 0=
Tests that the argument is not less than the maximum, i.e., the stored count.
Since U< is an unsigned compare, negative arguments will appear as very
high numbers and thus will also fail the test.

ABORT" Range error " Check if the comparison test fails.

+ CELL+
Otherwise adds the argument to the body address, plus an additional cell to
skip the count.

Here's another way that the use of defining words can help during development. Let's say you suddenly decide
that all of the arrays you've defined with STRING are too large to be kept in computer memory and should be
kept on disk instead. All you have to do is redefine the run-time portion of STRING. This new STRING will
compute which record on the disk a given byte would be contained in, read the record into a buffer using
INCLUDED, and return the address of the desired byte within the buffer. A string defined in this way could span
many consecutive records (using the same technique as in Prob. 5, Chap. 10).

You can use defining words to create all kinds of data structures. Sometimes, for instance, it's useful to create
multi-dimensional arrays. Here's an example of a defining word which creates two-dimensional byte arrays of
given size:

 c0 c1 c2 c3

r0

r1

 : ARRAY (#rows #cols --)
 CREATE DUP , * ALLOT
 DOES> (member: row col -- addr)
 ROT OVER @ * + + CELL+ ;

http://www.amresearch.com/starting_forth/sf11/sf11.html (6 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

r2 ?

r3 To create an array four bytes by four bytes, we would say

 4 4 ARRAY BOARD

To access, say, the byte in row 2, column 1, we could say

 2 1 BOARD C@

Here's how our ARRAY works in general terms. Since the computer only allows us to have one-dimensional
arrays, we must simulate the second dimension. While our imaginary array looks like this

 c0 c1 c2 c3

r0 0 1 2 3

r1 4 5 6 7

r2 8 9 10 11

r3 12 13 14 15

our real array looks like this

row# 0 1 2 3

offs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If you want the address of the byte in row 2, column 1, it can be computed by multiplying your row number (2)
by the number of columns in each row (4) and then adding your column number (1), which indicates that you
want the ninth byte in the real array. This calculation is what members of ARRAY must do at run time. You'll
notice that, to perform this calculation, each member word needs to know how many columns are in each row of
its particular array. For this reason, ARRAY must store this value into the beginning of the array at compile time.

For the curious, here are the stack effects of the run-time portion of array:

Operation Contents of stack

... row col pfa

ROT col pfa row

OVER @ col pfa row #cols

* col pfa row-index

+ + address

CELL+ corrected address

http://www.amresearch.com/starting_forth/sf11/sf11.html (7 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

It is necessary to add a cell to the computed address because the first cell of the array contains the number of
columns.

Our final example is the most visually exciting, if not the most useful.

 \ Shapes, using a defining word.

 DECIMAL

 : star [CHAR] * EMIT ;

 : .row CR 8 0 DO
 DUP 128 AND IF star
 ELSE SPACE
 THEN
 1 LSHIFT
 LOOP DROP ;

 : SHAPE CREATE 8 0 DO C, LOOP
 DOES> DUP 7 + DO I C@ .row -1 +LOOP CR ;

 HEX 18 18 3C 5A 99 24 24 24 SHAPE man
 81 42 24 18 18 24 24 81 SHAPE equis
 AA AA FE FE 38 38 38 FE SHAPE castle
 DECIMAL

.ROW prints a pattern of stars and spaces that correspond to the 8-bit number on the stack. For instance:

 2 BASE ! ok
 00111001 .ROW
 *** * ok
 DECIMAL ok

The defining word SHAPE takes eight arguments from the stack and defines a shape which, when executed,
prints an 8-by-8 grid that corresponds to the eight arguments. For example:

 MAN
 **
 **

 * ** *
 * ** *
 * *
 * *
 * *
 ok

In summary, defining words can be extremely powerful tools. When you create a new defining word, you extend
your compiler. Traditional languages like Fortran or BASIC do not provide this flexibility because these
traditional compilers and interpreters are inflexible packages that say, "Use my instruction set or forget it!"

http://www.amresearch.com/starting_forth/sf11/sf11.html (8 sur 18) [05/03/2005 04:56:51]

http://home.iae.nl/users/mhx/sf11/shapes.gfs

http://www.amresearch.com/starting_forth/sf11/sf11.html

The real power of defining words is that they can simplify your problem. Using them well, you can shorten your
programming time, reduce the size of your program, and improve readability. Forth's flexibility in this regard is
so radical in comparison with traditional languages that many people don't even believe it. Well, now you've seen
it.

The next section introduces still another way to extend the ability of Forth's compiler.

How to Control the Colon Compiler

Compiling words are words used inside colon definitions to do something at compile time. The most obvious
examples of compiling words are control-structure words such as IF, THEN, DO, LOOP, etc. Because Forth
programmers don't often change the way these particular words work, we're not going to study them any further.
Instead we'll examine the group of words that control the colon compiler and thus can be used to create any type
of compiling word.

Recall that the colon compiler ordinarily looks up each word of a source definition and compiles each word's
address into the dictionary entry--that's all. But the colon compiler does not compile the address of a compiling
word--it executes it.

How does the colon compiler know the difference? By checking the definition's "precedence bit." If the bit is
"off," the address of the word is compiled. If the bit is "on," the word is executed immediately; such words are
called "immediate" words.

The word IMMEDIATE makes a word "immediate." It is used in the form:

 : name definition ; IMMEDIATE

that is, it is executed right after the compilation of the definition.

To give and immediate example, let's define

 : SAY-HELLO ." Hello" ; IMMEDIATE

We can execute SAY-HELLO interactively, just as we could if it were not immediate.

 SAY-HELLO Hello ok

But if we put SAY-HELLO inside another definition, it will execute at compile time:

 : GREET SAY-HELLO ." I speak Forth " ; Hello ok

rather than at execution time:

 GREET I speak Forth ok

Before we go on, let's clarify our terminology. Forth folks adhere to a convention regarding the terms "run time"
and "compile time." In this example, the terms are defined relative to GREET. Thus we would say that SAY-
HELLO has a "compile-time behavior" but no "run-time behavior." Clearly, SAY-HELLO does have a run-time

http://www.amresearch.com/starting_forth/sf11/sf11.html (9 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

behavior of its own, but relative to GREET it does not.

To keep our levels straight, let's call GREET in this example the "compilee"; that is, the definition whose
compilation we're referring to. SAY-HELLO has no run-time behavior in relation to its compilee.

Here's an example of an immediate word that you're familiar with: the definition of the compiling word BEGIN.
It's simpler than you might have thought:

 : BEGIN HERE ; IMMEDIATE

BEGIN simply saves the address of HERE at compile time on the stack. Why? Because sooner or later an UNTIL
or REPEAT is going to come along, and either has to know what address in the dictionary to return to in the
event that it must repeat. This is the address that BEGIN left on the stack.

BEGIN's compile-time behavior is leaving HERE on the stack. But BEGIN compiles nothing into the compilee;
there is no run-time behavior for BEGIN.

Unlike BEGIN, most compiling words do have a run-time behavior. To have a run-time behavior, a word has to
compile into the compilee the address of the run-time behavior, which must already have been defined as a word.

A good example is DO. Like BEGIN, DO must provide, at compile time, a HERE for LOOP or +LOOP to return
to. But unlike BEGIN, DO also has a run-time behavior: it must push the limit and index onto the return stack.

The run-time behavior of DO is defined by a lower-level word, sometimes called (DO) or 2>R. The definition of
DO is this:

...

2>R

...

compilee definition

 : DO POSTPONE 2>R HERE ; IMMEDIATE

The word POSTPONE finds the address of the next word in the definition (in this case
2>R) and compiles its address into the compilee definition, so that at run-time 2>R will be
executed.

Another example is the definition of ;. At compile time, semicolon must do the following things:

1. compile the address of EXIT into the dictionary entry being compiled,
2. expose the new word to the colon compiler, and
3. leave compilation mode.

Here's the definition of semicolon:

 : ; POSTPONE EXIT REVEAL POSTPONE [; IMMEDIATE

The first phrase compiles EXIT, providing the run-time behavior. The second phrase, which is the compile-time
behavior, first exposes the word being compiled and then gets out of the compiler.

What is the reason for REVEAL? When words are in the process of being compiled, they are not yet findable by the
colon compiler. This is done to make it possible to redefine existing words in terms of the old definition plus
additional code, for example:

 : CR CR SPACE ;

http://www.amresearch.com/starting_forth/sf11/sf11.html (10 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

If during the compilation of the new CR its name were findable, the name of the original CR would be blocked, and
we would have had to do, e.g.:

 : _cr_ CR ;
 : CR _cr_ SPACE ;

The word POSTPONE can also be used to compile an immediate word as though it were not immediate. Given
our previous example, in which SAY-HELLO is an immediate definition, we might define

 : GREET POSTPONE SAY-HELLO ." I speak Forth " ; ok

to force SAY-HELLO to be compiled rather than executed at compile time. Thus:

 GREET Hello I speak Forth ok

Be sure to note the "intelligence" built into POSTPONE. POSTPONE parses the next word in the input stream,
decides if it is immediate or not, and proceeds accordingly. If the word was not immediate, POSTPONE compiles
the address of the word into a compilee definition; think of it as deferred compilation. If the word is immediate,
POSTPONE compiles the address of this word into the definition currently being defined; this is ordinary
compilation, but of an immediate word which otherwise would have been executed.

To review, here are the two words which are useful in creating new compiling words:

IMMEDIATE (--)
Marks the most recently defined word as one which, when encountered during
compilation, will be executed rather than being compiled.

POSTPONE xxx (--)

1. Used in the definition of a compiling word. When the compiling word,
in turn, is used in a source definition, the execution token of xxx will
be compiled into the dictionary entry so that when the new definition is
executed, xxx will be executed.

2. Used in a colon definition, causes the immediate word xxx to be
compiled as though it were not immediate; xxx will be executed when
the definition is executed.

More Compiler-controlling Words

There are two other compiler control words you should know. The words [and] can be
used inside a colon definition to stop compilation and start it again, respectively.
Whatever words appear between them will be executed "immediately", i.e., at compile
time.

Consider this example:

 : SAY-HELLO ." Hello " ;
 : GREET [SAY-HELLO] ." I speak Forth " ; Hello ok
 GREET I speak Forth ok

http://www.amresearch.com/starting_forth/sf11/sf11.html (11 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

In this example, SAY-HELLO is not an immediate word, yet when we compile GREET, SAY-HELLO executes
"immediately."

For a better example we first need to introduce the word LITERAL.

As you may recall, a number that appears in a colon definition is called a "literal." An example is the "4" in the
definition

 : FOUR-MORE 4 + ;

9 F O U R - M O R E

link

execution token

(LITERAL)

4

+

EXIT

The use of a literal in a colon definition requires two cells. The first contains the
execution token of a routine which, when executed, will push the contents of the
second cell (the number itself) onto the stack.

The name of this routine may vary; let's call it the "run-time code for a literal," or
simply (LITERAL). When the colon compiler encounters a number, it first compiles
the run-time code for a literal, then compiles the number itself.

The word you will use most often to compile a literal is LITERAL (no parentheses).
LITERAL compiles both the run-time code and the value itself. To illustrate:

 : FOUR-MORE [4] LITERAL + ;

Here the word LITERAL will compile as a literal the "4" that we put on the stack between the square brackets.
We get a dictionary entry that is identical to the one shown above.

For a more useful application of LITERAL, recall that in Chap. 8 we created an array called LIMITS that
consisted of five cells, each of which contained the temperature limit for a different burner. To simplify access to
this array, we created a word called LIMIT. The two definitions looked like this:

 VARIABLE LIMITS 4 CELLS ALLOT
 : LIMIT (index -- addr) CELLS LIMITS + ;

Now let's assume we will only access the array through the word LIMIT. We can eliminate the head of the array
(some bytes and one cell) by using this construction instead:

 HERE 5 CELLS ALLOT BASE !
 : LIMIT (index -- addr) CELLS [BASE @] LITERAL + ;
 DECIMAL

In the first line we put the address of the beginning of the array (HERE) in the system variable BASE (any other
scratch variable will work). In the second line, we compile this address as a literal into the definition of LIMIT.

Old version

head for LIMITS

New version

5
CELLS

Now we know all there is to know about LITERAL, we can also give a
better example of [and]. Imagine a colon definition in which we need to
type the byte from row 2, column 3, of the array BOARD we defined in
the previous section. To get the address of this byte, we could use the
phrase

http://www.amresearch.com/starting_forth/sf11/sf11.html (12 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

5
CELLS

head for LIMIT

CELLS

LIMITS

+

EXIT

head for LIMIT

CELLS

(LITERAL)

addr

+

EXIT

 BOARD 2 8 (#cols) * 3 + CELL+ +

but it's time consuming to execute

 2 8 * 3 +

every time we use this definition. Alternatively, we could write

 BOARD 19 CELL+ +

but it's unclear to human readers exactly what 19 means, and it is
irritating that, for portability, we still have to write CELL+ although 1 CELLS is just a
constant.

...

(LITERAL)

23

...

The best solution is to write

 BOARD [2 8 (#cols) * 3 + CELL+] LITERAL +

Here the arithmetic is performed only once, at compile time, and the result is compiled as a literal.

Here's a silly example which may give you some ideas for more practical applications. This definition let's you
peek into the innards of the word itself:

 : DUMP-THIS [HERE] LITERAL 32 DUMP ." DUMP-THIS" ;

When you execute DUMP-THIS, you will dump the memory into which DUMP-THIS was defined. You should
see how your Forth compiles the literal value of "here," the literal "32," the execution token of DUMP, and then
how it inlines the string "DUMP-THIS." (At compile-time, HERE points to the address of the next free code
byte. LITERAL compiles this number into the definition as a literal, so that it will serve as the argument for
DUMP at run-time.)

By the way, here's the definition of LITERAL:

 : LITERAL POSTPONE (LITERAL) , ; IMMEDIATE

First it compiles the address of the run-time code, then it compiles the value itself (using comma).

To summarize, here are the additional compiler control words we introduced in this section:

LITERAL
compile-time (--)
run-time (-- n)

Used only inside a colon definition. At compile time, compiles a value
from the stack into the definition as a literal. At run time, the value will be
pushed on the stack.

[(--) Leaves compilation mode.

] (--) Enters compilation mode.

http://www.amresearch.com/starting_forth/sf11/sf11.html (13 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

Curtain calls

This section gives us a chance to say "Goodbye" to the text interpreter
and the colon compiler and perhaps to see them in a new light.

Here is a definition of INTERPRET that will work in most Forth
systems:

 : INTERPRET (--)
 BEGIN
 BL FIND IF EXECUTE ?STACK ABORT" Stack empty"
 ELSE NUMBER
 THEN
 AGAIN ;

We've covered each of the words contained in this definition; we can describe INTERPRET in English by simply
"translating" its definition, like this:

Begin a loop. Within the loop, try to look up the next word from the input stream. If it's not defined, try to convert it
to a number. If it is defined, execute it, then check to see whether the stack is empty. (If it is, exit the loop and print
"STACK EMPTY.") Then repeat the infinite loop.

As you can see, the Forth text interpreter is a simple yet powerful structure. Now let's compare its structure with
that of the colon compiler:

 :] (--)
 BEGIN
 BL FIND DUP IF -1 = IF EXECUTE ?STACK ABORT" Stack empty"
 ELSE ,
 THEN
 ELSE DROP (NUMBER) POSTPONE LITERAL
 THEN
 AGAIN ;

The first thing you probably noticed is that the name of the colon compiler is not :, but]. The definition of :
invokes] after creating the dictionary head and performing a few other odd jobs.

The next thing you may have noticed is that the compiler is somewhat similar to the interpreter. Let's translate the

http://www.amresearch.com/starting_forth/sf11/sf11.html (14 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

definition into English:

Begin a loop. Within the loop, try to look up the next word from the input stream. If it's not defined, try to convert it
to a number and, if it's a number, compile it as a literal.

If it is defined, FIND has tested the word's precedence bit. If the word is immediate, then execute it and check to see
whether the stack is empty. If it is not immediate, FIND returned an execution token that can be compiled. Then
repeat the infinite loop.

Compare this to INTERPRET and you'll see that] could be called an interpreter with the ability to decide
whether to execute or compile any given word. It is the simplicity of this design that let's you add new compiling
words so easily.

In summary, we've shown two ways to extend the Forth compiler:

1. Add new, specialized compilers, by creating new defining words.
2. Extend the existing colon compiler by creating new compiling words.

While traditional compilers try to be universal tools, the Forth compiler is a collection of separate, simple tools ...
with room for more.

Which approach seems more useful:

Here is a summary of the words we've covered in this chapter:

http://www.amresearch.com/starting_forth/sf11/sf11.html (15 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

DOES>
run time:
(-- addr)

Used in creating a defining word; marks the end of its compile-time
portion and the beginning of its run-time portion. The run-time
operations are stated in higher-level Forth. At run time, the body
address of the defined word will be on the stack.

IMMEDIATE (--)
Marks the most recently defined word as one which, when
encountered during compilation, will be executed rather than being
compiled.

POSTPONE xxx (--)

1. Used in the definition of a compiling word. When the
compiling word, in turn, is used in a source definition, the
execution token of xxx will be compiled into the dictionary
entry so that when the new definition is executed, xxx will be
executed.

2. Used in a colon definition, causes the immediate word xxx to
be compiled as though it were not immediate; xxx will be
executed when the definition is executed.

LITERAL
compile-time (--)
run-time (-- n)

Used only inside a colon definition. At compile time, compiles a
value from the stack into the definition as a literal. At run time, the
value will be pushed on the stack.

[(--) Leaves compilation mode.

] (--) Enters compilation mode.

Review of Terms

Compile-time behavior

1. when referring to defining words: the sequence of instructions which will be
carried out when the defining word is executed--these instructions perform
the compilation of the member words;

2. when referring to compiling words: the behavior of a compiling word,
contained within a colon definition, during compilation of the definition.

Compilee
a definition being compiled. In relation to a compiling word, the compilee is the
definition whose compilation the compiling word affects.

Compiling word
a word used inside a colon definition to take some action during the compilation
process.

Defining word
a word which, when executed, compiles a new dictionary entry. A defining word
specifies the compile-time and run-time behavior of each member of the "family" of
words that it defines.

Precedence bit
In Forth dictionary entries, a bit which indicates whether a word should be executed
rather than be compiled when it is encountered during compilation.

http://www.amresearch.com/starting_forth/sf11/sf11.html (16 sur 18) [05/03/2005 04:56:51]

http://www.amresearch.com/starting_forth/sf11/sf11.html

Run-time behavior

1. when referring to defining words: the sequence of instructions which will be
carried out when any member is executed;

2. when referring to compiling words: a routine which will be executed when
the compilee is executed. Not all compiling words have run-time behavior.

Problems -- Chapter 11

1. Define a defining word named LOADED-BY that will define words which include a file when they are
executed. Example:

 S" mail.gfs" LOADED-BY CORRESPONDENCE

would define the word CORRESPONDENCE. When CORRESPONDENCE is executed, the file mail.gfs
is included (Hint: SLITERAL is NOT useful here). [answer]

2. Define a defining word BASED. which will create number output words for specific bases. For example,

 16 BASED. H.

would define H. to be a word which prints the top of the stack in hex but does not permanently change
BASE.

 DECIMAL

 17 DUP H. . 11 17 ok

[answer]

3. Define a defining word called PLURAL which will take the address of a word such as CR or STAR and
create its plural form, such as CRS or STARS. You'll provide PLURAL with the execution token of the
singular word by using tick. For instance, the phrase

 ' CR PLURAL CRS

will define CRS in the same way as though you had defined it

 : CRS (times --) 0 ?DO CR LOOP ;

[answer]

http://www.amresearch.com/starting_forth/sf11/sf11.html (17 sur 18) [05/03/2005 04:56:52]

http://home.iae.nl/users/mhx/sf11/11-1.gfs
http://home.iae.nl/users/mhx/sf11/11-2.gfs
http://home.iae.nl/users/mhx/sf11/11-3.gfs

http://www.amresearch.com/starting_forth/sf11/sf11.html

4. The French words for DO and LOOP are TOURNE and RETOURNE. Using the words DO and LOOP,
define TOURNE and RETOURNE as French "aliases." Now test them by writing yourself a french loop.
[answer]

5. Write a word called LOOPS which will cause the remainder of the input stream, up to the carriage return,
to be executed the number of times specified by the value on the stack. For example,

 7 LOOPS CHAR * EMIT SPACE * * * * * * * ok

[answer]

http://www.amresearch.com/starting_forth/sf11/sf11.html (18 sur 18) [05/03/2005 04:56:52]

http://home.iae.nl/users/mhx/sf11/11-4.gfs
http://home.iae.nl/users/mhx/sf11/11-5.gfs
http://validator.w3.org/

http://www.amresearch.com/starting_forth/sf12/sf12.html

12 Three Examples
Programming in Forth is more of an "art" than programming in any other language. Like painters drawing brushstrokes, Forth
programmers have complete control over where they are going and how they will get there. Charles Moore has written, "A
good programmer can do a fantastic job with Forth; a bad programmer can do a disastrous job." A good Forth programmer
must be conscious of "style."

Forth style is not easily taught; it's a subject that deserves a book of its own. Some elements of good Forth style include:

● simplicity,
● the use of many short definitions rather than a few longer ones,
● a correspondence between words and easy-to-understand actions or data structures,
● well-chosen names, and
● well laid-out files, clearly commented.

One good way to learn style, aside from trial and error, is to study existing Forth applications, including Forth itself. In this
book we've included the definitions of many Forth system words, and we encourage you to continue this study on your own.

This chapter introduces three applications which should serve as examples of good Forth style.

The first example will show you the typical process of programming in Forth: starting out with a problem and working step-by-
step towards the solution.

The second example involves a more complex application already written: you will see the use of well-factored definitions and
the creation of an application-specific "language."

The third example demonstrates the way to translate a mathematical equation into a Forth definition; you will see that working
with fixed-point arithmetic does not necessarily mean sacrificing speed and compactness.

1. WORD game

The example in this section is a refinement of the buzzphrase generator we programmed back in Chap. 10. (You might want to
review that version before reading this section.) The previous version did not keep track of its own carriage returns, causing us
to force CRs into the definition and creating a very ragged right margin. The job of deciding how many whole words can fit on
a line is a reasonable application for a computer and not a trivial one.

The problem is this: to draft a "brief" which consists of four paragraphs, each paragraph consisting of an appropriate
introduction and sentence. Each sentence will consist of four randomly-chosen phrases linked together by fillers to create
grammatically logical sentences and a period at the end.

The words and phrases have already been edited into the file phrases.gfs. Look at this file now, without looking at
wordgame.gfs. (we're pretending we haven't written the application yet).

File phrases.gfs defines the four introductions, compiled into the INTROS string array. The four (or more, INTROS is
self-organizing) introductions must be used in sequence. The same file phrases.gfs contains four sets of fillers, in
FILLER. The four sets are used in sequence, but any of the three versions within a set (organized in columns) is chosen at
random. Again, phrases.gfs contains the three columns of buzzwords from our previous version, with some added words.
We've organized the buzz words in separate 1ST-ADJECTIVE, 2ND-ADJECTIVE and NOUN string arrays.

You migh also look at at the sample output that precedes the end of this section, to get a better idea of the desired result.

"Top-down design" is a widely accepted approach to programming that can help to reduce development time. The idea is that
you first study your application as a whole, then break the problem into smaller processes, then break these processes into still

http://www.amresearch.com/starting_forth/sf12/sf12.html (1 sur 17) [05/03/2005 04:57:09]

http://home.iae.nl/users/mhx/sf12/phrases.gfs
http://home.iae.nl/users/mhx/sf12/wordgame.gfs
http://home.iae.nl/users/mhx/sf12/phrases.gfs
http://home.iae.nl/users/mhx/sf12/phrases.gfs
http://home.iae.nl/users/mhx/sf12/phrases.gfs

http://www.amresearch.com/starting_forth/sf12/sf12.html

smaller units. Only when you know what all the units should do, and how they will connect together, do you begin to write
code.

The Forth language encourages top-down design. But in Forth you can actually begin to write top-level definitions
immediately. Already we can imagine that the "ultimate word" in our application might be called PAPER, and that it will
probably be defined something like this:

 : PAPER 4 0 DO I INTRO SENTENCE LOOP ;

where INTRO uses the loop index as its argument to select the appropriate introduction. SENTENCE could be defined

 : SENTENCE 4 0 DO I PHRASE LOOP ENDS ;

where PHRASE uses the loop index as its argument to select the appropriate set, then chooses one of the three versions within
the set. ENDS takes care of the final '.' and CR at the end of a sentence.

Using our favorite editor, we can enter these top-level definitions into wordgame.gfs. Of course we can't INCLUDE this
file until we have written our lower-level definitions.

In complicated applications, Forth programmers often test the logic of their top-level definitions by using "stubs" for the lower-
level words. A stub is a temporary definition. It might simply print a message to let us know its been executed. Or it may do
nothing at all, except resolve the reference to its name in the high-level definition.

While the top-down approach helps to organize the programming process, it isn't always feasible to code in purely top-down
fashion. Usually we have to find out how certain low-level mechanisms will work before we can design the higher-level
definitions.

The best compromise is to keep a perspective on the problem as a whole while looking out for low-level problems whose
solutions may affect the whole application.

In our example application, we can see that it will no longer be possible to force CRs at predictable points. Instead we've got to
invent a mechanism whereby the computer will perform carriage returns automatically.

The only way to solve this problem is to count every character that is typed. Before each word is typed, the application must
decide whether there is room to type it on the current line or do a carriage return first.

So let's define the variable LINECOUNT to keep the count and the constant RMARGIN with the value 78, to represent the
maximum count per line. Each time we type a word we will add its count to LINECOUNT. Before typing each word we will
execute this phrase:

 (length-of-next-word --) LINECOUNT @ + RMARGIN < 0= IF CR

that is, if the length of the next word added to the current length of the line exceeds our right margin, then we'll do a carriage
return.

But we have another problem: how do we isolate words with a known count for each word? For now, let's assume we have
available a word Split-At-Char. This word breaks strings apart, given a specific delimiter.

Let's write out a "first draft" of this low-level part of our application. It will type a single word, making appropriate
calculations for carriage return.

BL Split-At-Char
Break string in two at first BL. Leaves the count on the stack, with the
address of the first character underneath.

http://www.amresearch.com/starting_forth/sf12/sf12.html (2 sur 17) [05/03/2005 04:57:09]

http://home.iae.nl/users/mhx/sf12/wordgame.gfs

http://www.amresearch.com/starting_forth/sf12/sf12.html

DUP 1+
Leaves the incremented count and a copy of the original count on the
stack.

LINECOUNT @ +
Compute how long the current line would be if a space plus the new
word were to be included on it.

RMARGIN > Decides if it would exceed the margin.

IF CR 0 LINECOUNT ! If so, resets the carriage and the count.

ELSE SPACE THEN Otherwise, leaves a space between the words.

DUP 1+ LINECOUNT +!
Increases the count by the length of the word to be typed, plus one for
the space.

TYPE
Types the word using the count and the address left by Split-At-
Char.

Now the problem is getting Split-At-Char to look at the strings in phrases.gfs. This is handled by INCLUDED, so if
we say

 S" phrases.gfs" INCLUDED

then CREATE will make sure all necessary strings are compiled in memory.

To help CREATE do this, we'll define the word $". As you can see from its definition, $" compiles the string (delimited by a
second quotation mark) into the dictionary, with the count in the first byte, and leaves its address on the stack for }$, }s$ and
}r$. To compile the count and string into the dictionary, we simply have to execute WORD, since WORD's buffer is HERE.
We get the string's address as a fillip, since WORD also leaves HERE.

All that remains is to ALLOT the appropriate number of bytes. This number is obtained by fetching the count from the first
byte of the string and adding one for the count's byte.

We have written $" to compile the next string into the dictionary, but also to pile the address of this string on the stack, on top
of the addresses of other strings that were compiled already just before that. In order to let other words know how many string
addresses are on the stack, $" also increments the top of stack:

 ('string1 'string2 ... stringN N new_string_address --) SWAP 1+ ;

In order to make this work for the first string $" must compile, we have the constant ${ put a 0 on the stack.

We now have ${ and $" compiling our strings for us, but at some point these addresses must be stored in the dictionary. There
we can choose one of them to print, when INTRO or PHRASE need to do so. Because there is clearly work to be done both at
compile and run-time, this is an ideal job for a defining word. The compile-time work is done in CREATE parts which
typically look as follows:

 (u --) DUP , (first compile count) 0 ?DO , LOOP (compile u string
addresses)

while the run-time part is handled in DOES> parts, doing something like

 DOES> (ix body -- c-addr u) SWAP CELLS + CELL+ @ COUNT ;

This DOES> part is actually usable for }$, which has the rather simple job to deliver INTRO's string, selected by an index on
the stack. Other words that need a string address want more randomness, which is easily provided by using CHOOSE (see the
listing for }s$ and }r$).

http://www.amresearch.com/starting_forth/sf12/sf12.html (3 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

Now we have a mechanism to present strings to Split-At-Char, the next question is: how do we know when we've gotten
to the end of such a string?

Since we are typing word by word what Split-At-Char outputs, we only have to check whether the character count of
these strings is larger than zero. Once Split-At-Char gets to the end of its input string, it starts returning empty strings.

For example, the phrase

 S" Hello, I speak Forth" .PHRASE

should type out the contents of the string, word by word, performing carriage returns where necessary.

How should we structure our definition of .PHRASE? Let's re-examine what it must do:

1. Determine whether there is still a word in the string to be typed.
2. If there is, type the word (with margin checking), then repeat. If there isn't, exit.

The two part nature of this structure suggests that we need a BEGIN...WHILE...REPEAT loop. Let's write our problem this
way, if only to understand it better.

 ... BEGIN ANOTHER? WHILE .WORD REPEAT ...

ANOTHER? will do step 1; .WORD will do step 2.

How should ANOTHER? determine whether there is still a word to be typed from the string? It simply tests the top of stack to
see if the string count is not yet zero, by using the phrase DUP:

 : ANOTHER? DUP ; (#chars -- TRUE=string-not-empty)

The (not properly formed) flag will serve as the argument for WHILE.

How do we compute the strings for .PHRASE to work on? This is accomplished by executing one of the various children of our
compiling word }$, }r$ or }s$. Thus our definition of .PHRASE might be

 : .PHRASE (c-addr u --) BEGIN ANOTHER? WHILE .WORD REPEAT 2DROP ;

We need the 2DROP because, when we exit the loop, we will have the final address of Split-At-Char and a zero count on
the stack, neither of which we need any longer.

How do we define .WORD? Actually, we've defined it already, a few pages back. However, it pays to split .WORD up into a
few other useful words, so that it looks like this:

 : -FITS? linecount @ + RMARGIN > ;
 : SPACE' linecount @ IF SPACE 1 linecount +! THEN ;
 : CR' CR 0 linecount ! ;

 : .WORD (addr1 #chars1 -- addr2 #chars2)
 BL Split-At-Char
 DUP 1+ (space!) -FITS? IF CR' THEN
 SPACE' TYPE' ;

Now we have our word-typing mechanism. But let's see if we're overlooking anything. For example, consider that every time
we start a new paragraph, we must remember to reset LINECOUNT to zero. Otherwise our .WORD will think that the current
line is full when it isn't. We should ask ourselves this question: is there ever a case in this application where we would want to

http://www.amresearch.com/starting_forth/sf12/sf12.html (4 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

perform a CR without resetting LINECOUNT? The answer is no, by the very nature of the application. For this reason we
defined

 : CR' CR 0 LINECOUNT ! ;

to create a version of CR that is appropriate for this application. We have used this CR in our definition of .WORD.

We should also consider our handling of spaces between words. By using the phrase

 IF CR ELSE SPACE THEN

before typing each word, we guarantee that there will be a space between each pair of words on the same line but no space at
the beginning of successive lines. And since we are typing a space before each word rather than after, we can place a period
immediately after a word, as we must at the end of a sentence.

But there is a problem with this logic: at the beginning of a new paragraph, we will always get one space before the first word.
Our solution: to redefine SPACE so that it will be sensitive to whether or not we're at the beginning of a line, and will not
space if we are:

 : SPACE LINECOUNT @ IF SPACE THEN ;

If LINECOUNT is "0" then we know we are at the beginning of a line, because of the way we have redefined CR.

While we are redefining SPACE, it would be logical to include the phrase

 1 LINECOUNT +!

in the redefinition. Again our reasoning is that we should never perform a space without incrementing the count.

Let's assume that we have edited our definitions into wordgame.gfs. Notice that we had very little typing to do, compared
with the amount of thinking we've done. Forth source code tends to be concise.

Now we can define our in-between-level words -- words like INTRO and PHRASE that we have already used in our highest-
level words, but which we didn't define because we didn't have the low-level mechanism.

Let's start with INTRO. The finished definition of INTRO looks like this:

 : INTRO (u --) CR' intros .PHRASE ;

Our mechanism has given us a very easy way to select strings. We can test this definition by itself, as follows:

 0 INTRO (or 1, 2 or 3 INTRO)
 In this paper we will demonstrate that ok

Notice that we put the argument to INTRO on the stack first.

The way to get a FILLER phrase is a little more complicated. All of it is handled by the DOES> part of }s$. Since we are
dealing with sets, not lines, and since the sets all have three strings, we must multiply the loop index for filler by 3. To pick
one of the 3 versions within the set, we must choose a random number under three, add it to the index so far, convert it to cells,
then add this result to the beginning of the set, taking into account the count of strings in front. We can define

 ...
 DOES> (ix --) DUP @ 1- ROT - 3 * 3 CHOOSE + CELLS + CELL+ @ COUNT ;

The DUP @ 1- ROT - is there because we compiled the strings in reverse order of their specification in phrases.gfs,

http://www.amresearch.com/starting_forth/sf12/sf12.html (5 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

and therefore need to find the complement of the actual compiled number of strings.

Again we can test this definition by writing

 3 FILLER
 to function as ok

The remaining words in the application are similar to their previous counterparts, stated in terms of the new mechanism.

Here is a sample of the output. (We've added REDO as an afterthought so that we'd be able to print the same part more than
once.)

 In this paper we will demonstrate that by using synchronized third generation
 capability balanced by qualified digital projections it becomes not
 unfeasible for all but the least stand-alone organizational hardware to
 function as transient undocumented mobility.

 On the one hand, studies have shown that by applying available resources
 towards synchronized fail-safe mobility coordinated with random context
 sensitive mobility it is possible for even the most responsive management
 mobility to avoid partial unilateral engineering.

 On the other hand, however, practical experience indicates that with
 structured deployment of stand-alone fail-safe concepts coordinated with
 optimal omnirange time phasing it is possible for even the most qualified
 monitored utilities to avoid optional undocumented utilities.

 In summary, then, we propose that by using total incremental programming
 coordinated with representative policy engineering it is possible for even
 the most responsive transitional engineering to generate a high level of
 compatible incremental engineering.

2. File Away!

Our second example consists of a simple filing system. It is a moderately useful application, and a good one to learn Forth
from. We have divided this section into four parts:

1. A "How To" for the end user. This will give you an idea of what the application can do.
2. Notes on the way the application is structured and the way certain definitions work.
3. A glossary of all the definitions in the application.
4. A listing of the application, including the data files themselves.

How to Use the Simple File System

This computer filing system lets you store and retrieve information quicky and easily. At the moment, it is set up to handle
people's names, occupations, and phone numbers. Not only does it allow you to enter, change, and remove records, it also
allows you to search the file for any piece of information. For example, if your have a phone number, you can find the person's
name; or, given a name, you can find the person's job, etc.

For each person there is a "record" which contains four "fields." The names which specify each of these four fields are

 SURNAME GIVEN JOB PHONE

("Given," of course, refers to a person's given name, or first name.)

http://www.amresearch.com/starting_forth/sf12/sf12.html (6 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

File Retrieval

You can search the file for the contents of any field by using the word FIND, followed by the field-name and the contents, as
in

 FIND JOB newscaster Dan Rather ok

If any "job" field contains the string "newscaster," then the system prints the person's full name. If no such field exists, it prints
"NOT IN FILE."

Once you have found a field, the record in which it was found becomes "current." You can get the contents of any field in the
current record using the word GET. For instance, having entered the line above, you can now enter

 GET phone 555-9876 ok

The FIND command will only find the first instance of the field that you are looking for. To find out if there is another
instance of the field that you last found, use the command ANOTHER. For example, to find another person whose "job" is
"newscaster," enter

 ANOTHER Jessica Savitch ok

and

 ANOTHER Frank Reynolds ok

When there are no more people whose job is "newscaster" in the file, the ANOTHER command will print "NO OTHER."

To list all the names whose field contains the string that was last found, use the command ALL:

 ALL

 Dan Rather
 Jessica Savitch
 Frank Reynolds
 ok

Since the surname and given name are stored separately, you can use FIND to search the file on the basis of either one. But if
you know the person's full name, you can often save time by locating both fields at once, by using the word FULLNAME.
FULLNAME expects the full name to be entered with the last name first and the two names separated by a comma, as in

 FULLNAME Wonder,Stevie Stevie Wonder ok

(There must not be a space after the comma, because the comma marks the end of the first field and the beginning of the
second field.) Like FIND and ANOTHER, FULLNAME repeats the name to indicate that it has been found.

You can actually find any pair of fields by using the word PAIR. You must specify both the field names and their contents,
separated by a comma. For example, to find a newscaster whose given name is Dan, enter

 PAIR JOB newscaster,GIVEN Dan Dan Rather ok

File Maintenance

To enter a new record, use the command ENTER, followed by the surname, given name, job, and phone, each separated by a

http://www.amresearch.com/starting_forth/sf12/sf12.html (7 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

comma only. For example,

 ENTER Nureyev,Rudolf,Ballet dancer,555-1234 ok

To change the contents of a single field within the current record, use the command CHANGE followed by the name of the
field, then the new string. For example,

 CHANGE JOB choreographer ok

To completely remove the current record, use the command REMOVE:

 REMOVE ok

Comments

This section is meant as a guide, for the novice Forth programmer, to the glossary and listing which follow. We'll describe the
structure of this application and cover some of the more complicated definitions. As you read this section, study the glossary
and listing on your own, and try to understand as much as you can.

Turn to the listing now. Near the end, this file contains the definitions for all nine end-user commands we've just discussed.
Notice how simple these definitions are, compared to their power!

This is a characteristic of a well-designed Forth application. Notice that the word -FIND, the elemental file-search word, is
factored in such a way that it can be used in the definitions of FIND, ANOTHER, and ALL, as well as in the internal word,
(PAIR), which is used by PAIR and by FULLNAME.

We'll examine these definitions shortly, but first let's look at the overall structure of this application.

One of the basic characteristics of this application is that each of the four fields has a name which we can enter in order to
specify the particular field. For example, the phrase

 SURNAME PUT

will put the character string that follows in the input stream into the "surname" field of the current record. The phrase

 SURNAME .FIELD

will print the contents of the "surname" field of the current record, etc.

There are two pieces of information that are needed to identify each field: the field's starting address relative to the beginning
of a record and the length of the field.

In this application, a record is laid out like this:

offset 0 16 32 56

contents surname given job phone

size 16 16 24 8

For instance, the "job" field starts thirty-two bytes in from the beginning of every record and continues for twenty-four bytes.

We chose to make a record exactly sixty-four bytes long, but this system can be modified to hold records of any length and any
number of fields.

http://www.amresearch.com/starting_forth/sf12/sf12.html (8 sur 17) [05/03/2005 04:57:09]

http://home.iae.nl/users/mhx/sf12/filer.gfs

http://www.amresearch.com/starting_forth/sf12/sf12.html

To add more fields, just add lines with the length of the new field, followed by RECORD new-field-name. For example, to add
a field FOO which is thirty bytes long, do

 30 RECORD foo

etc. The system automatically computes the values of R-LENGTH and #MAXRECS.

We've taken the two pieces of information for each field and put them into a double-length table associated with each field
name. This task is performed by the defining word RECORD, at compile-time. Our definition of JOB, therefore eventually
executes CREATE, as in

3 J O B

link

execution token

32

24

 CREATE JOB 32 , 24 ,

The literal 32 is computed by the system, which keeps track of the actual offset into a record through updating R-LENGTH.

Thus when we enter the name of a field, we are putting on the stack the address of the table that describes the "job" field. We
can fetch either or both pieces of information relative to this address.

Let's call each of these entries a "field specifying table," or a "spec table" for short.

Part of the design for this application is derived from the requirements of FIND, ANOTHER, and ALL; that is, FIND not only
has to find a given string within a given type of field, but also needs to "remember" the string and the type of field so that
ANOTHER and ALL can search for the same thing.

We can specify the kind of field with just one value, the address of the spec table for that type of field. This means that we can
"remember" the type of field by storing this address into KEEP.

KIND was created for this purpose, to indicate the "kind" of field.

To remember the string, we have defined a buffer called WHAT to which the string can be moved.

The word KEEP serves the dual purpose of storing the given field type into KIND and the given character string into WHAT. If
you look at the definition of the end-user word FIND, you will see that the first thing it does is KEEP the information on what
is being searched for. Then FIND executes the internal word -FIND, which uses the information in KIND and WHAT to find a
matching string.

ANOTHER and ALL also use -FIND, but they don't use KEEP. Instead they look for fields that match the one most recently
"kept" by FIND.

So that we can GET any piece of information from the record we have just "found," we need a pointer to the "current" record.
This need is met by the value #RECORD. The operations of the words SET, TOP and DOWN should be fairly obvious to you.

The word RECORD@ uses its stack parameter to compute the absolute address (the computer-memory address, somewhere in
the disk buffer) of the beginning of the current record. RECORD@ also makes sure that the record really is in the disk buffer.

http://www.amresearch.com/starting_forth/sf12/sf12.html (9 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

While a spec table contains the relative address of the field and its length, we usually need to know the field's absolute address
and length for words such as TYPE, MOVE, and PARSE. Look at the definition of the word FIELD to see how it converts the
address of a spec table into an absolute address and length. Then examine how FIELD is applied in the definition of .FIELD.

The word PUT also employs FIELD. Its phrase

 >R KBD, R> >FLD_

leaves on the stack the arguments

 addr-of-string count-of-string absolute-addr-of-field size-of-field

for MOVE to move the string into the appropriate field of the current record. Before we move the string, we fill the field with
spaces, to blank possible old contents. Also, we make sure the length of the moved string is not larger than the size of the field.

There are two things worth noting about the definition of FREE. The first is the method used to determine whether the record
is empty. We've made the assumption that if the first byte of a record is empty, then the whole record is empty, because of the
way ENTER works. If the first byte contains a character whose ASCII value is less than or equal to BL, then it is not a printing
character and the line is empty. As soon as an empty record is found, LEAVE ends the loop. #RECORD will contain the
number of the free record.

Another thing worth noting about FREE is that it aborts if the file is full, that is, if it runs through all the records without
finding one empty. We can use a DO loop to run through all the records, but how can we tell that the loop has run out before it
has found an empty record?

The best way is to leave a TRUE on the stack, to serve as a flag, before beginning the loop. If an empty record is found, we can
change the flag to FALSE (with the word INVERT) before we leave the loop. When we come out of the loop, we'll have a
TRUE if we never found an empty record, a FALSE if we did. This flag will be the argument for ABORT".

We use a similar technique in the definition of -FIND. -FIND must return a flag to the word that executed it: FIND,
ANOTHER, ALL or (PAIR). The flag indicates whether a match was found before the end of the file was reached. Each of
these outer words needs to make a different decision based on the state of this flag. This flag is TRUE if a match is not found
(hence the name -FIND). The decision to use negative logic was based on the way -FIND is used.

Because the flag needs to be TRUE if a match is not found, the easiest way to design this word is to start with a TRUE on the
stack and change it to a FALSE only if a match is found.

Now that you understand the basic design of this application, you should have no trouble understanding the rest of the listing,
using the glossary as a guide.

Filer Glossary

/CR A constant that defines the length in bytes of a newline sequence.

#MAXRECS
A constant that defines the maximum number of records in the data file. To increase
this number, add lines containing R-LENGTH spaces, followed by a newline, to the
data file.

FILE A value that holds the handle of the file containing the data.

KIND
A value that contains the address of the field-specifying table for the type of field that
was last searched for by FIND.

R-LENGTH A value that contains the length in bytes of a single record.

#RECORD A value that points to the current record.

http://www.amresearch.com/starting_forth/sf12/sf12.html (10 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

RECORD
A defining word to create field-specifying tables. Takes the field width in bytes as a
parameter and updates R-LENGTH. All uses of RECORD should happen before
#MAXRECS is defined. Usage: 10 RECORD foo

SURNAME Returns the address of the field-specifying table for the "surname" (last name) field.

GIVEN Returns the address of the field-specifying table for the "given" (first name) field.

JOB Returns the address of the field-specifying table for the "job" field.

PHONE Returns the address of the field-specifying table for the "phone" field.

WHAT
Returns the address of a buffer that contains the string that is being searched for, or
was last searched for, by FIND.

RBUF Returns the address of a buffer that contains the current record data.

FLUSH Makes sure all changed data is committed to disk, but does not close the file.

UPDATE Writes the data for the current record to disk.

RECORD@ Insures that the specified record is in RBUF.

>FLD_
Given the address of a field-specifying table, returns the address of the associated
field in RBUF, along with its assigned length.

>FLD
Given the address of a field-specifying table, returns the address of the associated
field in RBUF, along with its actual length.

FIELD
Insures that the associated field in the current record is in a disk buffer and returns the
address of the field in the buffer along with its actual length.

.FIELD
From the current record, types the contents of the field that is associated with the field-
specifying table at addr.

SET Sets the record pointer to the specified record.

TOP Resets the record pointer to the top of the file.

DOWN Moves the record pointer down one record.

.NAME Prints the full name found in the current record.

READ
Moves a character string, delimited by a comma or by a carriage return, from the input
stream to a temporary buffer, then returns its address and count.

PUT
Moves a character string, delimited by a comma or by a carriage return, from the input
stream into the field whose field-specifying table address is given on the stack.

KEEP
Moves a character string, delimited by a comma or by a carriage return, from the input
stream into WHAT, and saves the address of the given field in KIND, for future use
by -FIND.

FREE
Starting at the top of the file, finds the first record that is free, that is, whose count is
zero. Aborts if the file is full.

-FIND
Beginning at #record and proceeding down, compares the contents of the field
indicated by KIND against the contents of WHAT.

(PAIR)

Starting from the top, attempts to find a match on the contents of WHAT, using KIND
to indicate the type of field. If a match is made, then attempts to match a second field,
whose type is indicated by "field", with the contents {c-addr u}. If both match, prints
the name; otherwise repeats until a match is made or until the end of the file is
reached, in which case prints an error message.

ENTER
Finds the first free record, then moves four strings delimited by commas into the
surname, given, job and phone fields of that record.
Usage: ENTER lastname,firstname,job,phone

REMOVE Erases the current record.

CHANGE
Changes the contents of the given field in the current record.
Usage: CHANGE field-name new-contents

GET
Prints the contents of the given type of field from the current record.
Usage: GET field-name

http://www.amresearch.com/starting_forth/sf12/sf12.html (11 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

FIND
Finds the record in which there is a match between the contents of the given field and
the given string.
Usage: FIND field-name string

ANOTHER
Beginning with the next record after the current one, and using KIND to determine
type of field, attempts to find a match on WHAT. If successful, types the name;
otherwise an error message.

ALL
Beginning at the top of the file, uses KIND to determine type of field and finds all
matches on WHAT. Types the full name(s).

PAIR

Finds the record in which there is a match between both the contents of the first given
field and the first given string, and also the contents of the second given field and the
second given string. Comma is delimiter.
Usage: PAIR field1 string1,field2 string2

FULLNAME
Finds the record in which there is a match on both the first and last names given.
Usage: FULLNAME lastname,firstname

Filer Listing

The listing is here.

3. No Weighting

Our final example is a math problem which many people would assume could only be solved by using floating point. It will
illustrate how to handle a fairly complicated equation with fixed-point arithmetic and demonstrate that for all the advantages of
using fixed-point, range and precision need not suffer. Of course, when the hardware does have floating point one should
preferably use that instead, and we show how to do that, too. Using fixed-point has the slight disadvantage that, in order to
correctly compute scale factors, we have to know our Forth's number of bits per cell. For modern Forths the number of bits per
cell can be 16, 32, 64, or even higher. In order not to complicate the following description too much, we will assume 16-bit
hardware. That is probably the only environment this example will be useful for, anyway. Also, we'll assume 1 CHARS is
equivalent to one byte.

In this example we will compute the weight of a cone-shaped pile of material, knowing the height of the pile, the angle of the
slope of the pile, and the density of the material.

To make the example more "concrete," let's weigh several huge piles of sand, gravel, and cement. The slope of each pile,
called the "angle of repose," depends on the type of material. For example, sand piles itself more steeply than gravel.

(In reality these values vary widely, depending on many factors; we have chosen approximate angles and densities for

http://www.amresearch.com/starting_forth/sf12/sf12.html (12 sur 17) [05/03/2005 04:57:09]

http://home.iae.nl/users/mhx/sf12/filer.gfs

http://www.amresearch.com/starting_forth/sf12/sf12.html

purposes of illustration.)

Here is the formula for computing the weight of a conical pile h feet tall with an angle of repose of theta degrees, where D is
the density of the material in pounds per cubic foot:

For Sceptics

The volume of a cone, V, is given by , where

b is the radius of the base and h is the height. We can compute
the base by knowing the angle or, more specifically, the
tangent of the angle. The tangent of an angle is simply the
ratio of the segment marked h to the segment marked b in this
drawing:

 If we call this

angle "theta", then . Thus we can compute the

radius of the base with . When we substitute this

into the expression for V, and then multiply the result by the
density D in pounds per cubic foot, we get the formula shown
in the text.

.

This will be the formula which we must express in Forth.

Let's design our application so that we can enter the name of a
material first, such as

 DRY-SAND

then enter the height of a pile and get the result for dry sand.

Let's assume that for any one type of material the density and
angle of repose never vary. We can store both of these values
for each type of material into a table. Since we ultimately need
each angle's tangent, rather than the number of degrees, we
will store the tangent. For instance, the angle of repose for a
pile of cement is 35o, for which the tangent is .700. We will
store this as the integer 700.

Bear in mind that our goal is not just to get an answer; we are
programming a computer or device to get the answer for us in
the fastest, most efficient, and most accurate way possible. As
we indicated in Chap. 5, to write equations using fixed-point
arithmetic requires an extra amount of thought. But on
hardware that would have to emulate floating point, the effort
pays off in two ways:

1. vastly improved run-time
speed, which can be very
important when there are
millions of steps involved in a
single calculation, or when we
must perform thousands of
calculations every minute. Also,
2. program size, which would be critical if, for instance, we wanted to put this application in a
hand-held device specifically designed as a pile-measuring calculator. Forth is often used in this
type of instrument.

Let's approach our problem by first considering scale. The height of our piles ranges from 5 to
50 feet. By working out our equation for a pile of cement 50 feet high, we find that the weight
will be nearly 3,500,000 pounds.

But because our piles will not be shaped as perfect cones and because our values are averages, we cannot expect better than
four or five decimal places of accuracy. If we scale our result to tons, we get about 17,500. This value will comfortably fit
within the range of a single-length number, even on 16-bit hardware. For this reason, let's write this application entirely with
single-length arithmetic operators. (Although we will assume 16-bit hardware in the following, the code as shown will run
unmodified on any ANS Forth.)

http://www.amresearch.com/starting_forth/sf12/sf12.html (13 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

Applications which require greater accuracy can be written using double-length arithmetic; to illustrate we've even written a
second version of this application using double-length math, as you'll see later on. But we intend to show the accuracy that
Forth can achieve even with 16-bit math.

By running another test with a pile 40 feet high, we find that a difference of one-tenth of a foot in height can make a difference
of 25 tons in weight. So we decide to scale our input to feet and inches rather than merely to whole feet.

We'd like the user to be able to enter

 15 FOOT 2 INCH PILE

where the words FOOT and INCH will convert the feet and inches into tenths of an inch, and PILE will do the calculation.
Here's how we might define FOOT and INCH:

 : FOOT 10 * ;
 : INCH 100 12 */ 5 + 10 / + ;

The use of INCH is optional.

(By the way, we could as easily have designed input to be in tenths of an inch with a decimal point, like this:

 15.2

In this case, NUMBER would convert the input as a double-length value. Since we are only doing single-length arithmetic,
PILE could simply begin with DROP, to eliminate the high-order cell.)

In writing the definition of PILE, we must try to maintain the maximum number of places of precision without overflowing 15
bits. According to the formula, the first thing we must do is cube the argument. But let's remember that we will have an
argument which may be as high as 50 feet, which will be 500 as a scaled integer. Even to square 500 produces 250,000, which
exceeds the capacity of single-length arithmetic using 16-bit cells.

We might reason that, sooner or later in this calculation, we're going to have to divide by 2000 to yield an answer in tons. Thus
the phrase

 DUP DUP 2000 */

will square the argument and convert it to tons at the same time, taking advantage of */'s double-length intermediate result.
Using 500 as our test argument, the above phrase will yield 125.

But our pile may be as small as 5 feet, which when squared is only 25. To divide by 2000 would produce a zero in integer
arithmetic, which suggests that we are scaling down too much.

To retain the maximum accuracy, we should scale down no more than necessary. 250,000 can be safely accomodated by
dividing by 10. Thus we will begin our definition of PILE with the phrase

 DUP DUP 10 */

The integer result at this stage will be scaled to one place to the right of the decimal point (25000 for 2500.0).

Now we must cube the argument. Once again, straight multiplication will produce a double-length 32-bits result, so we must
use */ to scale down. We find that by using 1000 as our divisor, we can stay just within single-length range. Our result at this
stage will be scaled to one place to the left of the decimal point (12500 for 125000.) and still be accurate to 5 digits.

According to our formula, we must multiply our argument by pi. We know that we can do this in Forth with the phrase

http://www.amresearch.com/starting_forth/sf12/sf12.html (14 sur 17) [05/03/2005 04:57:09]

http://www.amresearch.com/starting_forth/sf12/sf12.html

 355 113 */

which causes no problems with scaling.

Next we must divide our argument by the tangent squared, which we can do by dividing the argument by the tangent twice.
Because our tangent is scaled to three decimal places, to divide by the tangent we multiply by 1000 and divide by the table
value. Thus we will use the phrase

 1000 TAN(THETA) */

Since we must perform this twice, let's make it a definition, called /TAN (for divide-by-the-tangent) and use the word /TAN
twice in our definition of PILE. Our result at this point will be scaled to one place to the left of the decimal (26711 for
267110, using our maximum test values).

All that remains is to multiply by the density of the material, of which the highest is 131 pounds per cubic foot. To avoid
overflowing, let's try scaling down by two decimal places with the phrase

 DENSITY 100 */

But by testing, we find that the result at this point for a 50-foot pile of cement will be 34,991, which just exceeds the 15-bit
limit. Now is a good time to take the 2000 into account. Instead of

 DENSITY 100 */

we can say

 DENSITY 200 */

and our answer will now be scaled to whole tons.

You will find this version in the listing. As we mentioned, we have also written this application using double-length arithmetic.
In this version you enter the height as a double-length number scaled to tenths of a foot, followed by the word FEET, as in 50.0
feet.

By using double-length integer arithmetic, we are able to compute the weight of the pile to the nearest whole pound. The range
of double-length 32-bit integer arithmetic compares with that of single-precision floating-point arithmetic. Below is a
comparison of the results obtained using a 10-decimal-digit pocket calculator, single-length Forth, double-length (32-bit)
Forth, and floating-point Forth. The test assumes a 50-foot pile of cement, using the table values.

 in pounds in tons

calculator 34,995,633 17,497.816

Forth 16-bit single-length --- 17,495

Forth 16-bit double-length 34,995,634 17,497.817

Forth 32-bit single-length --- 17,495

Forth 32-bit double-length 34,995,634 17,497.817

Forth floating-point 34,995,633 17,497.816

Here's an example of our application's output:

http://www.amresearch.com/starting_forth/sf12/sf12.html (15 sur 17) [05/03/2005 04:57:09]

http://home.iae.nl/users/mhx/sf12/spiles.gfs
http://home.iae.nl/users/mhx/sf12/dpiles.gfs
http://home.iae.nl/users/mhx/sf12/fpiles.gfs

http://www.amresearch.com/starting_forth/sf12/sf12.html

 S" spiles.gfs" INCLUDED ok
 cement ok
 10 foot pile = 138 tons of cement ok
 10 foot 3 inch pile = 151 tons of cement ok
 dry-sand ok
 10 foot pile = 81 tons of dry sand ok
 S" dpiles.gfs" INCLUDED cement ok
 10.0 feet = 279939 pounds of cement or 139.969 tons ok
 S" fpiles.gfs" INCLUDED cement ok
 10e feet = 279965.06373598 pounds, or 139.98253187 tons of cement ok

A note on "

The defining word MATERIAL takes three arguments for each material, one of which is the address of a string. .SUBSTANCE
uses this address to type the name of the material.

To put the string in the dictionary and to give an address to MATERIAL, we have defined a word called ". As you can see from
its definition, " compiles the string (delimited by a second quotation mark) into the dictionary, with the count in the first byte,
and leaves its address on the stack for MATERIAL. To compile the count and string into the dictionary, we simply have to
execute WORD, since WORD's buffer is HERE. We get the string's address as a fillip, since WORD also leaves HERE.

All that remains is to ALLOT the appropriate number of bytes. This number is obtained by fetching the count from the first
byte of the string and adding one for the count's byte.

A Browser Interface for FPILES

This interface is Forth system dependent. It will work for iForth 2.0, after some preparations:

● Run iForth on the file fsserver.frt
● Execute the word PILE-SERVER.
● Manipulate the below FORM and press SEND. A new browser window opens with the calculation result.

Height in feet:

 cement

wet sand

dry sand

clay

loose gravel

packed gravel

Review of Terms

Stub in Forth, a temporary definition created solely to allow testing of a higher-level definition.

Top-down Programming

a programming methodology by which a large application is divided into smaller units, which
may be further subdivided as necessary. The design process starts with the overview, or "top,"
and proceeds down to the lowest level of detail. Coding of the low-level units begins only after
the entire structure of the application has been designed.

http://www.amresearch.com/starting_forth/sf12/sf12.html (16 sur 17) [05/03/2005 04:57:09]

http://home.iae.nl/users/mhx/sf12/fsserver.frt

http://www.amresearch.com/starting_forth/sf12/sf12.html

http://www.amresearch.com/starting_forth/sf12/sf12.html (17 sur 17) [05/03/2005 04:57:09]

http://validator.w3.org/

AM Research contact page

Shipping
Address

PMB 423, 1000 Sunrise Avenue, 9B, Roseville, CA
95661

Telephone 916.780.7623

Fascimile 916.780.7624

email email

Authorized
Consultants

B² Engineering, Henrik Thurfjell

Discussion
Forum is
temporary
closed

Linux users: "ssh -p 2003 www.amresearch.com"

Windows users: Download PuTTY, click the "SSH"
radiobutton, set the url to "www.amresearch.com"
and port to 2003, then "open" to get the login
screen.

29OCT03 Valid HTML
4.01!

http://www.amresearch.com/contact.html [05/03/2005 04:57:18]

mailto:support@amresearch.com?subject=Website%20Support
mailto:Bsquareng@aol.com
mailto:henrik@sbcglobal.net
http://validator.w3.org/check/referer
http://validator.w3.org/check/referer
http://validator.w3.org/check/referer

PuTTY: a free telnet/ssh client

PuTTY: A Free Telnet/SSH Client

Home | Licence | FAQ | Docs | Download | Keys | Links
Mirrors | Updates | Feedback | Changes | Wishlist | Team

PuTTY is a free implementation of Telnet and SSH for Win32 and Unix platforms, along with an
xterm terminal emulator. It is written and maintained primarily by Simon Tatham.

The latest version is beta 0.57.

LEGAL WARNING: Use of PuTTY, PSCP, PSFTP and Plink is illegal in countries where
encryption is outlawed. I believe it is legal to use PuTTY, PSCP, PSFTP and Plink in England and
many other countries, but I am not a lawyer and so if in doubt you should seek legal advice before
downloading it. You may find this site useful (it's a survey of cryptography laws in many countries)
but I can't vouch for its correctness.

Use of the Telnet-only binary (PuTTYtel) is unrestricted by any cryptography laws.

Latest news

2005-02-20 SECURITY HOLE, fixed in PuTTY 0.57

PuTTY 0.57, released today, fixes two security holes which can allow a malicious SFTP server to
execute code of its choice on a PSCP or PSFTP client connecting to it. We recommend everybody
upgrade to 0.57 as soon as possible.

2004-12-23 Trojan PuTTY installer circulating

We've been alerted to a trojan PuTTY 0.56 installer that was posted on CNET's download.com for
about a fortnight (now removed). We are informed it installed various spyware.

The file length was 509860 bytes (much shorter than any installer we've ever released) and the
md5sum was 49550e478e9dd008998c2c5294a884c5.

We'd like to take this opportunity to encourage everyone to verify the signatures of PuTTY downloads
before executing them. Details are on our Keys page.

2004-11-16 Migration to Subversion

As of today, the PuTTY source tree has migrated away from CVS, to use Subversion as its version
control system. I'm afraid this means that anyone who was previously checking our source out of CVS
will have to start checking it out using Subversion instead.

http://www.chiark.greenend.org.uk/~sgtatham/putty/ (1 sur 2) [05/03/2005 04:57:31]

http://www.chiark.greenend.org.uk/~sgtatham/putty/licence.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/faq.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/keys.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/links.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/mirrors.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/maillist.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/feedback.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/changes.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/
http://www.chiark.greenend.org.uk/~sgtatham/putty/team.html
http://www.pobox.com/~anakin/
http://rechten.uvt.nl/koops/cryptolaw/
http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-sftp-readdir.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-sftp-string.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/keys.html
http://subversion.tigris.org/

PuTTY: a free telnet/ssh client

2004-10-26 ANOTHER SECURITY HOLE, fixed in PuTTY 0.56

PuTTY 0.56, released today, fixes a serious security hole which can allow a server to execute code of
its choice on a PuTTY client connecting to it. In SSH2, the attack can be performed before host key
verification, meaning that even if you trust the server you think you are connecting to, a different
machine could be impersonating it and could launch the attack before you could tell the difference.
We recommend everybody upgrade to 0.56 as soon as possible.

That's two really bad holes in three months. I'd like to apologise to all our users for the inconvenience.

2004-08-03 SECURITY HOLE, fixed in PuTTY 0.55

PuTTY 0.55, released today, fixes a serious security hole which may allow a server to execute code
of its choice on a PuTTY client connecting to it. In SSH2, the attack can be performed before host key
verification, meaning that even if you trust the server you think you are connecting to, a different
machine could be impersonating it and could launch the attack before you could tell the difference.
We recommend everybody upgrade to 0.55 as soon as possible.

Site map

● Licence conditions under which you may use PuTTY.
● The FAQ.
● The documentation.
● Download PuTTY!
● Subscribe to the PuTTY-announce mailing list to be notified of new releases.
● Feedback and bug reporting: contact address and guidelines. Please read the guidelines before

sending us mail; we get a very large amount of mail and it will help us answer you more
quickly.

● Changes in recent releases.
● Wish list and list of known bugs.
● Links to related software and specifications elsewhere.
● A page about the PuTTY team members.

If you want to comment on this web site, see the Feedback page.
(last modified on Sun Feb 20 15:58:43 2005)

http://www.chiark.greenend.org.uk/~sgtatham/putty/ (2 sur 2) [05/03/2005 04:57:31]

http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-ssh2-debug.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-modpow.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/licence.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/faq.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/maillist.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/feedback.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/changes.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/
http://www.chiark.greenend.org.uk/~sgtatham/putty/links.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/team.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/feedback.html

	amresearch.com
	Literature page
	Leo Brodie's Starting Forth - Intro
	Leo Brodie's Starting Forth - Chapter 1
	Leo Brodie's Starting Forth - Chapter 2
	Leo Brodie's Starting Forth - Chapter 3
	Leo Brodie's Starting Forth - Chapter 4
	Leo Brodie's Starting Forth - Chapter 5
	Leo Brodie's Starting Forth - Chapter 6
	http://www.amresearch.com/starting_forth/sf7/sf7.html
	Leo Brodie's Starting Forth - Chapter 8
	http://www.amresearch.com/starting_forth/sf9/sf9.html
	http://www.amresearch.com/starting_forth/sf10/sf10.html
	http://www.amresearch.com/starting_forth/sf11/sf11.html
	http://www.amresearch.com/starting_forth/sf12/sf12.html
	AM Research contact page

	NAMPDINMIHKKKGFPGGADNAIMCLNNBBNJ:
	form1:
	x:
	f1:
	f2: cement

	f3:
	f4:

